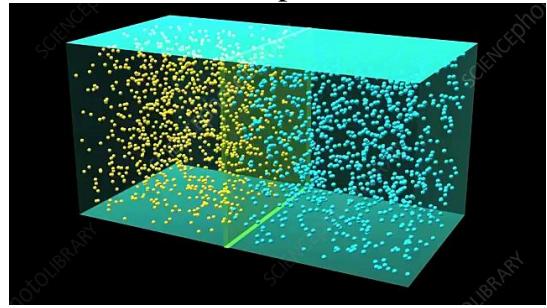


Molecular Diffusion

- Recall we showed processes like heat conduction and shear stress are due to molecular transport/diffusion
 - due to random motion of molecules and collisions
- Example of mass diffusion after partition raised
 - what is wrong with this simulation?
- And as molecules move, they carry all their properties with them



credit: Russell Kightley/ Science Photo Library

Diffusion-1
Copyright © 2007, 2019, 2022, 2024 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Diffusion Expressions

- Recall our expressions for diffusion based on f
 - **“heat” diffusion** (energy transport in j -direction due to random molecular motion)

$$q_j = \int_{-\infty}^{\infty} \left(\frac{1}{2} m C^2 \right) n C_j f(C_i) dV_c = \frac{1}{2} \rho \overline{C_j C^2}$$
 - **shear stress** (transverse momentum transport in j -direction due to random molecular motion, $i \neq j$)

$$\tau_{ij} = \int_{-\infty}^{\infty} (m C_i) n C_j f(C_i) dV_c = -\rho \overline{C_i C_j}$$
- Now that we have a solution for the velocity distribution f (at equilibrium), we can go back and examine these diffusion terms

Diffusion-2
Copyright © 2007, 2019, 2022, 2024 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Heat Conduction

- Start with heat conduction
 - examine 1st component, q_1

$$\frac{q_1}{\rho/2} = \overline{C_1 C^2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_1 (C_1^2 + C_2^2 + C_3^2) f(C_i) dC_1 dC_2 dC_3$$

$$- \text{ assuming translational equilibrium } f_o(C_i) = \left(\frac{m}{2\pi kT} \right)^{3/2} e^{-\frac{mC^2}{2kT}}$$

$$\frac{q_1}{\rho/2} = \overline{C_1 C^2} = \left(\frac{m}{2\pi kT} \right)^{3/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (C_1 C_1^2 + C_1 C_2^2 + C_1 C_3^2) e^{-\frac{m(C_1^2 + C_2^2 + C_3^2)}{2kT}} dC_1 dC_2 dC_3$$

$$\int_{-\infty}^{\infty} \text{odd} = 0$$

Odd functions in C_1

Even function in C_1

- Therefore $q_1 = 0$, same for other components

if in translational equilibrium \Rightarrow no molecular heat diffusion

Shear Stress

- Examine τ_{ij} ($i \neq j$)

$$\tau_{ij} = -\rho \overline{C_i C_j}$$

- one component

$$\frac{\tau_{12}}{\rho} = - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_1 C_2 f(C_i) dC_1 dC_2 dC_3$$

$$\frac{\tau_{12}}{\rho} = - \left(\frac{m}{2\pi kT} \right)^{3/2} \int_{-\infty}^{\infty} C_1 e^{-\frac{mC_1^2}{2kT}} dC_1 \int_{-\infty}^{\infty} C_2 e^{-\frac{mC_2^2}{2kT}} dC_2 \int_{-\infty}^{\infty} e^{-\frac{mC_3^2}{2kT}} dC_3$$

Even

- So $\tau_{12} = 0$, **Odd**
similar result for all $i \neq j$ terms

in (translational) equilibrium, no shear stresses

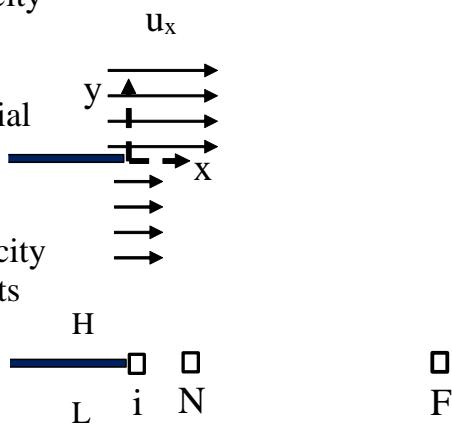
– can still have normal stresses (pressure)

Diffusion and Nonequilibrium

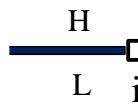
- Preceding shows that transverse momentum diffusion and diffusion of energy (at least for only ε_{tr}) are **manifestations of translational nonequilibrium**
- “Empirical” models
 - $\tau_{ij} \propto du_i/dx_j$
 - $q_j \propto dT/dx_j$
- So velocity and temperature gradients must be responsible for (or related to) nonequilibrium velocity distributions*

Shear Stress Example

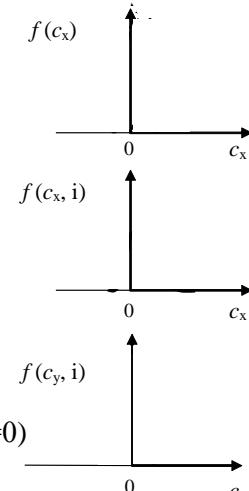
- To understand how velocity gradient leads to shear stress, consider 2-d (subsonic) flow with initial velocity discontinuity
- Examine molecular velocity distribution at three points
 - Initial (i)
 - Near field (N)
 - Far field (F)



Velocity Distributions: Initial



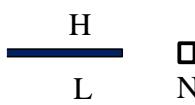
- Centered volume at initial location contains equal volumes (and numbers) of molecules from H and L fluids
 - same n and T , but different mean horizontal velocities (\bar{c}_x)
 - subsonic $\Rightarrow \Delta \bar{c}_x < c_{rms}$
- c_x distribution is combination of H and L Maxwellians
- c_y distribution same for both fluids ($\bar{c}_y = 0$)
 - same $T \Rightarrow$ just shifted version of c_x



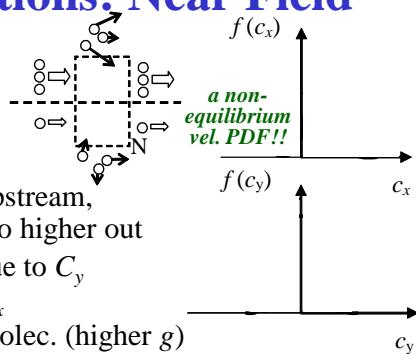
Diffusion-7
Copyright © 2007, 2019, 2022, 2024 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Velocity Distributions: Near Field



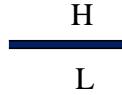
- Molecules convect in from upstream, higher flux in from H, but also higher out
- From above/below, flux in due to C_y
 - flux from above has faster c_x
- Higher coll. rates for faster molec. (higher g)
- $f(c_x)$ nonsymmetric, weighted to faster c_x (more influx from H)
 - collisions will move some of fast c_x to lower values
- $f(c_y)$ essentially unchanged by fluxes (same in and out)
 - but during collisions some x-momentum is transferred to (random) y-momentum $\Rightarrow f(c_y)$ widens *gas gets hotter!!*



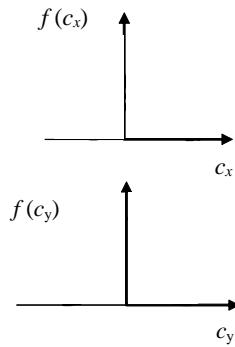
Diffusion-8
Copyright © 2007, 2019, 2022, 2024 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Velocity Distributions: Far Field



- Far downstream, process continues until flow is nearly in equilibrium
 - essentially Maxwellian distributions
 - $f(c_x)$ and $f(c_y)$ have same widths but different means
- x-momentum from H side has moved toward L side due to C_y (random motion)
 - can call this “shear stress” in fluid
- Wider random distribution - hotter
 - can call this “shear work” done by fluid



Boltzmann Equation

- So if we can't use the equilibrium distribution f ($= f_o$), how can we derive expressions for μ and k , i.e., where do gradient diffusion models come from?
- Approach is to solve the **Boltzmann equation**
 - in its simplest form, it is a transport/conservation eqn. that describes how f at a given c_i can change for a point (small volume element) in a gas due to:
 1. convection of c_i molecules in and out of the volume
 2. body forces (acceleration)
 3. collisions (depleting and replenishing)
 - so it can tell us how the molecular velocity PDF evolves in a non-equilibrium flow

Chapman-Enskog Solution

- To derive the gradient based diffusion models, we
 - 1) assume small departures from the equilibrium velocity distribution
 - so $f(c_i)$ close to $f_o(c_i)$ *ends up corresponding to assuming "weak" gradients in the gas*
 - 2) use a **perturbation** analysis to find the difference between f and f_o , e.g., $f(c_i) = f_o(c_i) + f_o(c_i)\Phi(c_i)$
 - 3) then with the new f , we can find q_j and τ_{ij}
- The result is our familiar gradient models
 - and **expressions for viscosity and thermal conductivity** based on molecular properties
- This approach (with other assumptions) is known as the Chapman-Enskog solution of the Boltzmann equation
 - details in V&K, Chap. X (for monatomic gas)

Viscosity T Dependence

- Recall that our simple hard-sphere model for ideal gas poorly predicted temperature dependence of μ
 - $\mu \propto T^{1/2}$, but should be closer to $T^{0.7}$ for simple gases
- Can we improve without full Chapman-Enskog approach?
- Our simple model for viscosity was $\mu/\rho \propto \lambda \bar{C} = \bar{C}^2/\theta$
 - for near equil, $\bar{C}^2 \propto T$
 - what about using a better model than hard sphere for θ ?
- Our general model based on bimolecular collision rate is

$$\theta_{AB} = n_B \int_0^\infty \left(\frac{m_{AB}^*}{2\pi kT} \right)^{3/2} e^{-\frac{m_{AB}^*}{2kT} g^2} \sigma_{AB}^T(g) 4\pi g^3 dg$$

Viscosity T Dependence: Power Law

- Can improve using our previous power law result for the total collision cross-section $\sigma_{AB}^T(g) = a' g^{-4/\alpha}$ \nwarrow a constant
- Then $\theta_{AB} = a' n_B \int_0^\infty \left(\frac{m_{AB}^*}{2\pi kT} \right)^{3/2} e^{-\frac{m_{AB}^*}{2kT} g^2} g^{-4/\alpha} 4\pi g^3 dg$
– can solve using variable substitution $x = \left(\frac{g}{\sqrt{2kT/m_{AB}^*}} \right)$
$$\theta_{AB} = a' n_B \left(\sqrt{\frac{2kT}{m_{AB}^*}} \right)^{1-4/\alpha} \underbrace{\int_0^\infty 4\pi^{-1/2} x^{3-4/\alpha} e^{-x^2} dx}_{dg = \sqrt{2kT/m_{AB}^*} dx}$$
- So $\theta_{AB} \propto n_B \left(\sqrt{\frac{2kT}{m_{AB}^*}} \right)^{1-4/\alpha}$ \nwarrow a constant
- Again with $\mu \propto \rho \bar{C}^2 / \theta \Rightarrow \mu \propto \rho T / n (T^{1/2-2/\alpha}) \propto T^{\frac{\alpha+4}{2\alpha}}$

Diffusion-13
Copyright © 2007, 2019, 2022, 2024 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Viscosity T Dependence: Power Law

- So $\frac{\mu}{\mu_{ref}} = \left(\frac{T}{T_{ref}} \right)^s$ $s = \frac{\alpha+4}{2\alpha}$ **same T dep. as C-E with power law**
& for hard sphere $\alpha \rightarrow \infty, s \rightarrow 0.5$
- Compare to gas results (at $T < 100^\circ C$)

Gas	s (measured)	α (implied)
Ne	0.657	12.7
He	0.685	10.8
N ₂	0.756	7.81
O ₂	0.814	6.37
CO ₂	0.873	5.36
CH ₄	0.981	4.16
H ₂ O	1.10	3.33

Intermolecular Potentials
closer to hard-sphere
(very weak attraction)

close to induced+induced
dipole ($\alpha=6$)

~dipole-dipole ($\alpha=3$)

also: s really $s(T)$; because at high T , less time for attr. forces to act

Diffusion-14
Copyright © 2007, 2019, 2022, 2024 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Thermal Conductivity T Dependence

- In the absence of internal energy modes (rotation, vibration, electronic), we would find similar results for thermal conductivity, k
$$\frac{k}{k_{ref}} = \left(\frac{T}{T_{ref}} \right)^s$$
- This is a reasonable approximation for monatomic gases (at not too high T)
 - however for other gases, need to include transport of energy carried by molecule's internal energy modes
 - but including internal energy means we also need to consider the effect of **inelastic collisions**