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Molecular Diffusion
• Recall we showed processes like heat conduction and 

shear stress are due to molecular transport/diffusion

– due to random 
motion of 
molecules and
collisions

• Example of mass
diffusion after
partition raised
– what is wrong

with this simulation?

• And as molecules move, they carry all their properties 
with them 

credit: Russell Kightley/ Science Photo Library
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Diffusion Expressions
• Recall our expressions for diffusion based on f

– “heat” diffusion (energy transport in j-direction due 

to random molecular motion)

– shear stress (transverse momentum transport in j-
direction due to random molecular motion, ij)

• Now that we have a solution for the velocity 

distribution f (at equilibrium), we can go back and 

examine these diffusion terms
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Heat Conduction
• Start with heat conduction

– examine 1st component, q1

– assuming translational equilibrium

• Therefore q1=0, same for other components

 
 

  






















 321

22

31

2

21

2

11

23

2

1
1

2
3

2
2

2
1

22
dCdCdCeCCCCCC

kT

m
CC

q
kT

CCCm



Odd functions in C1 Even function in C1

if in translational equilibrium  no molecular heat diffusion

     












 321

2

3

2

2

2

11

2

1
1

2
dCdCdCCfCCCCCC

q
i



  kT

mC

io e
kT

m
Cf 2

23 2

2















0




odd

2

2

1
CCq jj 

Diffusion -4

School of Aerospace Engineering

Copyright  © 2007, 2019, 2022, 2024 by Jerry M. Seitzman. 

All rights reserved.
AE/ME 6765

Shear Stress
• Examine ij (ij)

– one component

• So 12=0,

similar result for all ij terms
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Odd 
Even 

in (translational) equilibrium, no shear stresses

 can still have normal stresses (pressure)
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Diffusion and Nonequilibrium
• Preceding shows that transverse momentum diffusion and 

diffusion of energy (at least for only tr) are manifestations 

of translational nonequilibrium

• “Empirical” models

– ij  dui/dxj

– qj  dT/dxj

• So velocity and temperature gradients must be responsible 

for (or related to) nonequilibrium velocity distributions
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Shear Stress Example
• To understand how velocity 

gradient leads to shear 

stress, consider 2-d 

(subsonic) flow with initial 

velocity discontinuity

• Examine molecular velocity 

distribution at three points

1. Initial (i)

2. Near field (N)

3. Far field (F)
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• Centered volume at initial location 

contains equal volumes (and numbers) 

of molecules from H and L fluids

– same n and T, but different mean 

horizontal velocities (തcx)

– subsonic  ∆തcx<crms

• cx distribution is combination of H 

and L Maxwellians

• cy distribution same for both fluids (തcy=0)

– same T just shifted version of cx
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Velocity Distributions: Initial
∆തcx
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Velocity Distributions: Near Field

• Molecules convect in from upstream, 
higher flux in from H, but also higher out

• From above/below, flux in due to Cy

– flux from above has faster cx

• Higher coll. rates for faster molec. (higher g)

• f (cx) nonsymmetric, weighted to faster cx (more influx from H)
– collisions will move some of fast cx to lower values

• f (cy) essentially unchanged by fluxes (same in and out)
– but during collisions some x-momentum is transferred to (random) 

y-momentum  f (cy) widens
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Velocity Distributions: Far Field

• Far downstream, process continues until 

flow is nearly in equilibrium

– essentially Maxwellian distributions 

– f (cx) and f (cy) have same widths but 

different means

• x-momentum from H side has moved 

toward L side due to Cy (random motion)

– can call this “shear stress” in fluid

• Wider random distribution - hotter

– can call this “shear work” done by fluid
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Boltzmann Equation
• So if we can’t use the equilibrium distribution f ( fo), 

how can we derive expressions for  and k, i.e., where 
do gradient diffusion models come from? 

• Approach is to solve the Boltzmann equation

– in its simplest form, it is a transport/conservation eqn. 
that describes how f at a given ci can change for a point 
(small volume element) in a gas due to:

1. convection of ci molecules in and out of the volume  

2. body forces (acceleration)

3. collisions (depleting and replenishing)

– so it can tell us how the molecular velocity PDF evolves 
in a non-equilibrium flow
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Chapman-Enskog Solution
• To derive the gradient based diffusion models, we

1) assume small departures from the equilibrium velocity 
distribution

• so f (ci) close to fo(ci) 

2) use a perturbation analysis to find the difference 
between f and fo, e.g., f (ci)= fo(ci) + fo(ci)(ci)

3) then with the new f, we can find qj and ij

• The result is our familiar gradient models 

– and expressions for viscosity and thermal 
conductivity based on molecular properties

• This approach (with other assumptions) is known as the 
Chapman-Enskog solution of the Boltzmann equation

– details in V&K, Chap. X (for monatomic gas)

ends up corresponding to assuming 
“weak” gradients in the gas
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Viscosity T Dependence

• Recall that our simple hard-sphere model for ideal gas 
poorly predicted temperature dependence of 

–  T 1/2, but should be closer to T 0.7 for simple gases 

• Can we improve without full Chapman-Enskog
approach?

• Our simple model for viscosity was /  ഥC =ഥC
2
/

– for near equil, ഥC
2
 T

– what about using a better model than hard sphere for  ?

• Our general model based on bimolecular collision rate 
is
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Viscosity T Dependence: Power Law

• Can improve using our previous power law result for 

the total collision cross-section

• Then

– can solve using variable substitution

• So

• Again with    ഥC
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Viscosity T Dependence: Power Law

• So 

• Compare to gas results (at T<100C)
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Gas s (measured)  (implied)

Ne 0.657 12.7

He 0.685 10.8

N2 0.756 7.81

O2 0.814 6.37

CO2 0.873 5.36

CH4 0.981 4.16

H2O 1.10 3.33

closer to hard-sphere 

(very weak attraction)

& for hard sphere , s0.5

close to induced+induced

dipole (=6) 

same T dep. as C-E with power law

~dipole-dipole (=3)

Intermolecular Potentials

also: s really s(T); because at high T, less time for attr. forces to act
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Thermal Conductivity T Dependence

• In the absence of internal energy modes (rotation, 

vibration, electronic), we would find similar results 

for thermal conductivity, k

• This is a reasonable approximation for monatomic 

gases (at not too high T)

– however for other gases, need to include transport of 

energy carried by molecule’s internal energy modes

– but including internal energy means we also need to 

consider the effect of inelastic collisions
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