

Distribution over Energy Levels

- Now that we know

$$\ln W_{\max} \cong \ln \Omega$$

– we have a new question....

- What energy macrostate is the most probable?

– what set of N_i produces W_{\max} ?

– equivalently what set of $N_i \rightarrow (\ln W)_{\max}$?

- To find this, let's start with (corrected) Boltzmann statistics

$$W_{CB}(N_i) = \frac{\prod_i g_i^{N_i}}{\prod_i N_i!} = \prod_i \frac{g_i^{N_i}}{N_i!} \Rightarrow \ln W_{CB} = \ln \prod_i \frac{g_i^{N_i}}{N_i!}$$

$$N_3 \quad \vdots \quad \varepsilon_3, g_3$$

$$N_2 \quad \varepsilon_2, g_2$$

$$N_1 \quad \varepsilon_1, g_1$$

$$N_0 \quad \varepsilon_0, g_0$$

$\ln W$ Expression

$$\ln W_{CB} = \ln \prod_i \frac{g_i^{N_i}}{N_i!} \quad N_3 \quad \vdots \quad \varepsilon_3, g_3$$

- Simplify

$$\ln W_{CB} = \sum_i \ln \frac{g_i^{N_i}}{N_i!} = \sum_i (\ln g_i^{N_i} - \ln N_i!) \quad N_2 \quad \varepsilon_2, g_2$$

$$= \sum_i (N_i \ln g_i - \ln N_i!) \quad N_1 \quad \varepsilon_1, g_1$$

– for large x , **Stirling's Formula**

$$\ln x! \cong x(\ln x - 1)$$

$$\ln W_{CB} \cong \sum_i (N_i \ln g_i - N_i \ln N_i + N_i)$$

- Now we need to maximize $\ln W(N_i)$

– how?

Maximizing $\ln W$

$$\ln W = \sum_i (N_i \ln g_i - \ln N_i!) \approx \sum_i (N_i \ln g_i - N_i \ln N_i + N_i)$$

- Maximizing $\ln W$ implies a small change in the N_i distribution (δN_i), which would cause a small change in $\ln W$ ($\delta \ln W$), is **zero**

$$\delta(\ln W) = \sum_i \frac{\partial(\ln W)}{\partial N_i} \delta N_i = 0 \quad (1) \quad \begin{matrix} \text{assumes } W \text{ is} \\ \text{essentially continuous} \\ \text{function of } N_i \end{matrix}$$

$$\begin{aligned} \frac{\partial}{\partial N_i} (\ln W_{CB}) &= \frac{\partial}{\partial N_i} \sum_i (N_i \ln g_i - \ln N_i!) \\ &= \sum_i \left(\frac{\partial}{\partial N_i} (N_i \ln g_i) - \frac{\partial}{\partial N_i} \ln N_i! \right) \end{aligned}$$

– with Stirling's Formula

$$\begin{aligned} \frac{d}{dx} \ln x! &\approx \frac{d}{dx} x(\ln x - 1) \\ \ln x + x(1/x) - 1 &\approx \ln x \quad \frac{\partial}{\partial N_i} \ln(W_{CB}) \approx \sum_i (\ln g_i - \ln N_i) = \sum_i \ln \frac{g_i}{N_i} \end{aligned}$$

Distribution Energy Levels-3
Copyright ©2009, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Maximizing $\ln W$

- Thus requirement to maximize $\ln W$ (assuming Boltzmann statistics) becomes

$$\sum_i \delta N_i \ln \frac{g_i}{N_i} = 0 \quad (1')$$

– with constraints

$$\text{Mass} \quad \sum_i \delta N_i = 0 \quad (2)$$

$$\text{Energy} \quad \sum_i \varepsilon_i \delta N_i = 0 \quad (3)$$

- (1',2,3) are set of 3 coupled algebraic equations

Distribution Energy Levels-4
Copyright ©2009, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Solution Method

- Powerful method to solve this set
 - Lagrange's Method of Undetermined Multipliers
- Overall approach
 - multiply constraint equations ((2) and (3)) by some constants and add to (1') $\lambda \times 0 = 0$
 - $$-\alpha \sum_i \delta N_i = 0 \quad (2') \quad -\beta \sum_i \varepsilon_i \delta N_i = 0 \quad (3')$$
 - $$(1') + (2') + (3') \Rightarrow \sum_i \delta N_i \underbrace{\left(\ln\left(g_i/N_i\right) - \alpha - \beta \varepsilon_i \right)}_{= 0} = 0 \quad (4)$$
 - but α, β arbitrary constants
 - our choice α, β such that $= 0$ *so (4) = 0 independent of how we change N_i*
 - for each and every energy level i
 - resulting equation for each i
$$\ln \frac{g_i}{N_i} = \alpha + \beta \varepsilon_i \quad (5)$$

Distribution Energy Levels-5
Copyright ©2009, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Energy Level Population Distribution

- So we now have M equations for N_i (let's call them N_i^*) that maximize $\ln W$

$$N_i^* = g_i e^{-\alpha - \beta \varepsilon_i} = g_i e^{-\alpha} e^{-\beta \varepsilon_i} \quad (5) \quad \begin{array}{l} \text{for } \varepsilon_i \uparrow \Rightarrow N_i^*/g_i \downarrow \\ \Rightarrow \text{high lying energy levels} \\ \text{tend to be less populated} \end{array}$$
 - but have $M+2$ unknowns (N_i^* , α , β)
 - so must still satisfy constraints $N = \sum_i N_i^* \quad E = \sum_i \varepsilon_i N_i^*$
- Aside - above deriv. for Boltzmann statistics
 - could repeat for general case (BE or FD statistics) for large N with Stirling's formula
 - result
$$\ln W_{[BE]} \approx \sum_i \left(N_i \ln \frac{g_i \pm N_i}{N_i} \pm g_i \ln \frac{g_i \pm N_i}{g_i} \right) \quad (6) \quad \begin{array}{l} N_i^* \ll g_i \Rightarrow e^{-\alpha - \beta \varepsilon_i} \ll 1 \\ \text{Boltzmann limit} \quad \square \\ \text{and for small } \varepsilon_i \text{ requires } \alpha \gg 1 \\ \text{will see } \Rightarrow (V/N)(2\pi kT)^{3/2} / h^3 \gg 1 \end{array}$$

Distribution Energy Levels-6
Copyright ©2009, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Identifying the Lagrange Multipliers

- To find “useful” expression for N_i^* , need to find α, β
- Most general case, insert (6) for N_i^* into constraint equations

$$N = \sum_i N_i^* \rightarrow N = \sum_i \frac{g_i}{e^{\alpha+\beta\varepsilon_i} \mp 1}$$

$$E = \sum_i \varepsilon_i N_i^* \rightarrow E = \sum_i \frac{g_i \varepsilon_i}{e^{\alpha+\beta\varepsilon_i} \mp 1}$$

- could then find α, β for given N, E, ε_i, g_i ...BUT
- no general analytic solution with this method

Most Probable Energy Distribution

- Using population constraint with **Boltzmann limit**

$$N_i^* = g_i e^{-\alpha} e^{-\beta\varepsilon_i} \rightarrow N = \sum_i N_i^* = e^{-\alpha} \sum_i g_i e^{-\beta\varepsilon_i}$$

$$\frac{N_i^*}{N} = \frac{g_i e^{-\beta\varepsilon_i}}{\sum_i g_i e^{-\beta\varepsilon_i}}$$

$e^{-\alpha} = \frac{N}{\sum_i g_i e^{-\beta\varepsilon_i}}$

(7) Fraction of molecules in i^{th} energy level for most probable macrostate

$$\frac{N_i^*}{N} = \frac{g_i e^{-\beta\varepsilon_i}}{Q} \quad Q \equiv \sum_i g_i e^{-\beta\varepsilon_i} \quad \text{Partition Function}$$

- So only need to identify β to find most probable macrostate population distribution
 - but first, short detour to look at $\ln W_{\max}$ vs. $\ln \Omega$ now that we have included constraint equations

ln W_{\max}

- Recall for Boltzmann limit

$$\ln W \cong \sum_i (N_i \ln(g_i/N_i) + N_i)$$

- For most probable macrostate

$$\begin{aligned} \ln W_{\max} &\cong \sum_i \left(N_i^* \ln \frac{g_i}{N_i^*} + N_i^* \right) \quad \sum_i N_i^* = N \\ \frac{Q e^{\beta \epsilon_i}}{N} &= \frac{g_i}{N_i^*} \quad = \sum_i \left[N_i^* \ln \left(\frac{Q}{N} e^{\beta \epsilon_i} \right) \right] + N \\ &= \sum_i \left[N_i^* \left\{ \ln \left(\frac{Q}{N} \right) + \beta \epsilon_i \right\} \right] + N \\ \boxed{\ln W_{\max} = N \left(1 + \ln \frac{Q}{N} \right) + \beta E} &\quad \sum_i N_i^* \beta \epsilon_i = \beta E \quad (8) \quad \sum_i N_i^* \ln \left(\frac{Q}{N} \right) = N \ln \left(\frac{Q}{N} \right) \end{aligned}$$

- so $\ln W_{\max}$ only depends on macroscopic properties (E, N) and partition function Q (and the constant β)

Summary – Boltzmann Limit

- Most probable population distribution** over the energy levels is

$$\frac{N_i^*}{N} = \frac{g_i e^{-\beta \epsilon_i}}{Q} \quad Q \equiv \sum_i g_i e^{-\beta \epsilon_i}$$

- Since the most probable macrostate contains nearly all the microstates, and assuming equal *a priori* probability for each microstate meeting E, N constraints (for given V)

fundamental postulate of Stat. Mech.

- measurement of N_i produces N_i^* with near certainty
⇒ **thermodynamic equilibrium distribution**

- Number of microstates**

$$\ln \Omega \cong \ln W_{\max} = N \left(1 + \ln \frac{Q}{N} \right) + \beta E$$