
1

Distribution Energy Levels-1

School of Aerospace Engineering

Copyright  © 2009, 2023  by Jerry M. Seitzman. 

All rights reserved.

AE/ME 6765

Distribution over Energy Levels

• Now that we know  

– we have a new question….

• What energy macrostate is the 
most probable?

– what set of Ni produces Wmax?

– equivalently what set of Ni  (lnW)max?

• To find this, let’s start with (corrected) Boltzmann 
statistics
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lnW Expression

• Simplify

– for large x, Stirling’s Formula 

• Now we need to maximize lnW(Ni)

– how?
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Maximizing lnW

• Maximizing lnW implies a small change in the Ni

distribution (Ni), which would cause a small change in 
lnW (lnW), is zero

– with Stirling’s Formula
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Maximizing lnW

• Thus requirement to 
maximize lnW
(assuming Boltzmann statics) becomes

– with constraints

• (1,2,3) are set of 3 coupled algebraic equations 
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Solution Method

• Powerful method to solve this set

– Lagrange’s Method of Undetermined Multipliers

• Overall approach

– multiply constraint equations ((2) and (3)) by some 
constants and add to (1)

– but ,  arbitrary constants

• our choice ,  such that 
for each and every energy level i

– resulting equation for each i
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Energy Level Population Distribution
• So we now have M equations for Ni (let’s call them Ni

*) that 

maximize lnW

– but have M+2 unknowns (Ni
*, ,  )

– so must still satisfy constraints

• Aside - above deriv. for Boltzmann statistics

– could repeat for general case (BE or FD statistics) for large N

with Stirling’s formula

– result
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(6)

Ni
*<< gi  e--i <<1

Boltzmann limit 
and for small i requires  >>1

for i  Ni
*/gi 

high lying energy levels 
tend to be less populated

will see  (V/N)(2kT)3/2 / h3 >> 1
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Identifying the Lagrange Multipliers

• To find “useful” expression for Ni
*, need to find , 

• Most general case, insert (6) for Ni
* into constraint 

equations

– could then find ,  for given N, E, i, gi…BUT

– no general analytic solution with this method
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Most Probable Energy Distribution
• Using population constraint with Boltzmann limit

• So only need to identify  to find most probable macrostate
population distribution

– but first, short detour to look at lnWmax vs. ln now that we 
have included constraint equations
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lnWmax

• Recall for Boltzmann limit

• For most probable macrostate

– from (7)

– so lnWmax only depends on macroscopic properties (E, N)
and partition function Q (and the constant  )
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Summary – Boltzmann Limit

• Most probable population distribution over the 
energy levels is

• Since the most probable macrostate contains nearly 
all the microstates, and assuming
equal a priori probability for each microstate 
meeting E, N constraints (for given V)

– measurement of Ni produces Ni
* with near certainty

 thermodynamic equilibrium distribution

• Number of microstates
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