

Radiation

- So far we have used statistical mechanics/statistical thermodynamics to examine equilibrium properties of matter
- Thermodynamics, being the study of matter and energy, is also applicable to pure energy, e.g., electromagnetic radiation
- As with our previous study of matter, the primary question is
 - What is the distribution of the “particles” among the possible energy levels at equilibrium?
- For radiation, the “particles” are **photons**

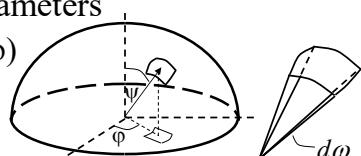
NASA

Equilibrium Radiation-1
Copyright © 2022, 2028 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Radiation Field Descriptors

- Photons characterized by 2 parameters
 - 1) direction of propagation (ψ, ϕ)
 - differential 2-d angular spread given by $d\omega \equiv$ **differential solid angle**
 - 2) frequency ν (or wavelength $\lambda = c/\nu$, c =speed of light)
 - photon energy, $\epsilon = h\nu$
 - photon momentum, $p = h/\lambda = h\nu/c$ *NOTE: p ≠ pressure*
- Compare to mass particles, characterized by
 - 1) direction of motion
 - 2) speed (\Rightarrow energy and momentum)



$$d\omega = \sin \psi d\psi d\phi$$

(units=steradians or sr)

$$\int d\omega = 4\pi$$

so photons are different – all have same speed (in vacuum), but different energies and momenta

Equilibrium Radiation-2
Copyright © 2022, 2028 by Jerry M. Seitzman.
All rights reserved.

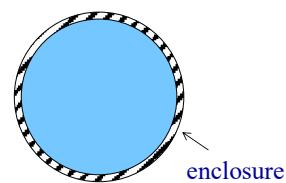
AE/ME 6765

Photon Distribution Function

- In general, a radiation field can be described by
 - **intensity** I , e.g., $W/m^2(/sr)$, or *sr unit often omitted*
 - **photon density** n^R , e.g., number of photons/ $m^3(/sr)$
- The **photon frequency distribution function** can be written as $f^R = f^R(v, \omega)$ such that
 - $n^R f^R d\omega dv$ = number of photons per unit volume in frequency (energy) interval $v \rightarrow v+dv$ and given center direction within angular “cone” $d\omega$
- **Spectral density** is defined by $n_v^R \equiv n^R f^R$
 - number of photons/ $m^3/Hz(/sr)$
- **Spectral intensity** is $I_v = c h v n_v^R$
 - $W/m^2/Hz(/sr)$

Radiative Equilibrium

- What do I_v or n_v^R look like if the radiation energy mode is in “internal” **equilibrium**
 - i.e., equilibrium distribution of photons among the possible energy levels
- To find this, consider a radiation field interacting with matter
 - **radiation field** inside (vacuum) enclosure that is opaque to radiation, i.e., nontransmitting and absorbs all incident radiation
 - since radiation can not escape, will eventually reach equilibrium with enclosure
 - if in equilibrium with radiation field, then body must also emit equilibrium radiation, known as a **blackbody**
- Can think of this as an equilibrium photon gas



Approach for Equilibrium Distribution

- Use same statistical mechanics approach developed for ideal gas (“particles”)
 - but photon gas follows *Bose-Einstein statistics* (can have unlimited number of bosons in a single quantum state)
- Previously presented that most probable macrostate for *B-E* statistics has distribution $N_i^* = \frac{g_i}{e^{\alpha + \beta \varepsilon_i} - 1}$
 - where α was Lagrange multiplier to satisfy constraint $N = \sum N_i$, and β was to satisfy $E = \sum N_i \varepsilon_i$
- For photons, there is no constraint on $N \Rightarrow \alpha = 0$
 - nothing prevents 1 high energy photon from becoming 2 low energy photons (no equivalent to mass conservation)
- Using Boltzmann relation ($S = k \ln \Omega$), and TD expression $(\partial S / \partial E)_{V,N} = 1/T$ again gives $\beta = 1/kT$

Equilibrium Frequency Distribution

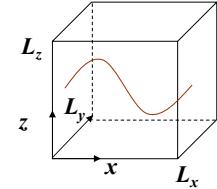
- So equilibrium (most probable) photon distribution is

$$N_i^* = \frac{g_i}{e^{\varepsilon_i/kT} - 1}$$
- Assuming any photon frequency (energy) is possible, i.e., the distribution is continuous, and with $\varepsilon_i = h\nu$

$$N(\nu) d\nu = \frac{g(\nu)}{e^{h\nu/kT} - 1} \quad \text{from this point, will drop * notation; all results for equilibrium distributions}$$
- This leads to question, **what is degeneracy $g(\nu)$?**
- For our continuous distribution, this is equivalent to asking how many quantum states are in the frequency range ν to $\nu + d\nu$
 - this is similar to asking about extended degeneracy for translating particles in a box

Radiation Enclosure

- Examine radiation enclosure using similar approach as traveling (translating) particle in a box; consider eigenvalues for **standing EM waves** in enclosure
- Translating particle in a box quantum numbers were $n_i = K_i L_i / \pi$
 - periodic boundary conditions gave $K_i = (2\pi/h)(mv_{i,n_i})$
- Recognize that mv was particle momentum
 - rewriting for photons, with momentum = $h\nu/c$, and using isotropy (same result in any direction)
 \Rightarrow photon quantum numbers in enclosure are $n = (2L/c)v$
or $n^3 = (8V/c^3)v^3$



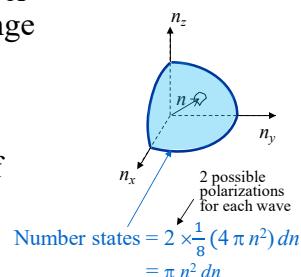
Degeneracy

$$n^3 = (8V/c^3)v^3$$

- Recall the photon degeneracy is number of quantum states in the frequency range ν to $\nu + d\nu$
- This is related to number of quantum states in range n to $n+dn$
 - which is number of state in portion of spherical shell in “ n -space” of radius n that is restricted to $n_x, n_y, n_z > 0$
 - equals $\pi n^2 dn$
- From our relation between n and ν

$$d(n^3) = (8V/c^3) d(v^3)$$

$$\Rightarrow \pi n^2 dn = (8\pi V/c^3) v^2 dv = g(v) dv$$



Equilibrium (Blackbody) Radiation

- So inserting this into our earlier equilibrium photon distribution function

$$N(v) dv = \frac{g(v)}{e^{hv/kT} - 1} = \frac{8\pi V}{c^3} \frac{v^2 dv}{e^{hv/kT} - 1}$$

- In terms of the photon spectral density

$$n_v^R = \frac{N(v)}{4\pi V} = \frac{2v^2/c^3}{e^{hv/kT} - 1}$$

- In terms of spectral intensity

$$I_{v,b} = h v c n_v^R = \frac{2hv^3/c^2}{e^{hv/kT} - 1}$$

Planck added this after postulating quantized radiated energy, so able to predict long λ radiation behavior

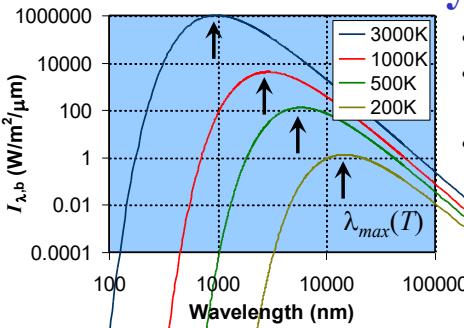
- in terms of wavelength

$$I_v = dI/dv, \quad I_{\lambda,b} = \frac{2hc^2/\lambda^5}{e^{hc/\lambda kT} - 1}$$

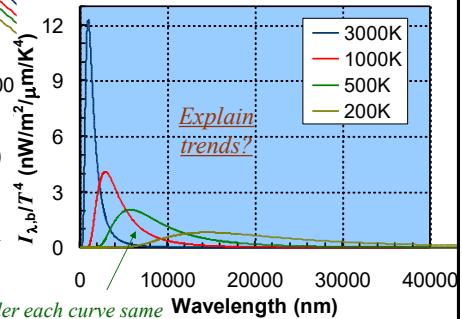
- *Planck Function*
- *Planck's Law*
- *Planck Blackbody Distribution*, so often denoted $I_{v,b}$

AE/ME 6765

Blackbody Intensity



- $I_{\lambda,b} \uparrow$ with T for all λ
- λ_{max} shifts blue as $T \uparrow$
- $\lambda_{max} T = 2897.8 \mu\text{m K}$
- $I_{\lambda_{max},b} / T^5 = \text{constant}$
 $\sim 0.004 \text{ nW/m}^2/\mu\text{m}/\text{K}^5$



- Spectrally integrated $I_b = f_n(T)$
Stefan-Boltzmann constant
 - $I_b / T^4 \sim 18 \text{ nW/m}^2/\text{K}^4 \equiv \sigma / \pi$
 - so total radiation intensity (energy) scales as T^4

AE/ME 6765

Photon Distribution Function

- In terms of the distribution function
$$f^R(\nu) = \frac{I_\nu}{I_{tot}} = \frac{n_\nu^R}{n^R} = \frac{\pi}{\sigma T^4} \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1}$$
- So like matter, we can describe a radiation field, **that is in equilibrium**, with a single parameter, its temperature
 - the temperature is a measure of how the “particles” (photons) are distributed among the energy levels
- Unlike many of the energy modes of matter, radiation is often far from being in equilibrium
 - especially the radiation fields produced by gases at typical pressures

Equilibrium Radiation and Energy

- Examine total equilibrium radiation intensity as function of temperature, $I_b(T)$
- What is the total energy of an atomic gas (neglecting electronic energy)?
 - $E = 3/2 NkT = 3/2 pV$
- How long to deplete all this energy due to blackbody radiation?
 - $t = 3/2 p(V/A)/I_b$
 - for 1mm diameter spherical region at 1bar

