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General Method for Calculating Chemical Equilibrium Composition 

1) For given initial conditions (e.g., for given reactants), choose the species to be included in 

the products. 

 As an example, for combustion of hydrogen with air we might chose the following 

products: H2O, H2, O2, N2, NO, OH, H, and NO2. In terms of a conversion reaction, we 

would write: 
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where  represents an arbitrary number of moles of the fuel (and also in the way this 

equation was chosen to be written it is also called the equivalence ratio, where a value of 

=1 represents just the right number of moles of fuel to react with the oxygen to form only 

the most stable combustion products, H2O in this case). 

2) For a mixture of M species, there are generally M+2 unknowns: M concentrations, ni, and 

two intensive properties, e.g., T and P.  For a mixture consisting of R atoms, e.g. R=4 for 

the C/H/O/N system, we can write R atom conservation equations. You can think of each of 

the conservation equations as initial conditions or constraints. (Note, these R equations may 

not be independent, in which case we can only use as many as are independent.)  If we 

further specify two thermodynamic properties, we typically have M-R unknowns. One 

could specify the T and P of the products, or for example in adiabatic flame temperature 

calculations, you would specify H and P of the products. 

 We solve for the M-R unknowns using stoichiometric reaction relationships to give us 

enough independent Kp. To come up with the M-R reactions, one method is to write 

formation reactions for each species present, except for the “element” species. (Note: this 

method is not so helpful if one of the element species in not part of the mixture.) 

 In our example (M=8,R=3), we need 5 formation reactions: 
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3) Next, write equilibrium relationships for each formation reactions using the Kpf,i for 

each. 

 For our hydrogen/air example, we have: 
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4) Now, we include the (independent) atom conservation equations. 

 Again for our example, we get: 
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 where ntot is the total number of product moles per  moles of H2 and is unknown at this 

point. 

5) To remove the ntot dependence, we use atom balance ratios (physically, it is these ratios, not 

the total number of moles, which are most important), and we add the constraint that the 

mole fractions must sum to unity, e.g., 
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6) Now given two thermodynamic properties, we have enough information to solve for the 

unknown Xi. If T and P of the products are known, the solution simply consists of 

determining the Kpf,i from a source such as the JANNAF tables. 

 If the final temperature is unknown, for example in an adiabatic flame temperature 

calculation, then the solution is iterative: guessing T, finding the product composition, then 

calculating its associated T and using it to improve your guess at T.  As an alternative for 

calculating the final temperature, one can realize that most of the energy is associated with 

the presence of the “major” (largest Xi) species.  Therefore you can ignore all the 

other/“minor” species on your first iteration and get a very close estimate of T using the 

major species only.  Then go back and reiterate, now including the minor species.  For 

rough estimates of product compositions, you can simply take the temperature and the 

species mole fractions found from the major species product calculations and use them, 

along with stoichiometric reactions that form the minor species from the major species (i.e., 

appropriate Kp), to calculate the minor species concentrations.  This approach is known as 

the major-minor model or major-minor species approximation. In some cases, like the 
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hydrogen/air example described above, one can get a simple algebraic solution for the mole 

fractions of the major products using the major species model (see below). 

  Of course, the easiest way to solve the problem is to use a chemical equilibrium computer 

code/tool.  You still have to determine the products to be included in the calculation, and 

the initial conditions, e.g., initial atom ratios, but then the computer can perform the 

thermodynamic property evaluations and the iterations!! 

7) Major-Minor Model:  To illustrate the use of the major-minor model, let’s estimate the 

flame temperature for the hydrogen/air combustion example. First, we choose the major 

species; we let the products be H2O, N2 and either O2 (for lean mixtures) or H2 (for rich 

mixtures). Writing the reactions for the two cases and denoting the stoichiometric 

coefficients for the products in terms of  from simple atom balances, we have 
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 Major Species Mole Fractions: From the above reaction equations and with algebra, we get: 

Xi <1 (lean) >1 (rich) 
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H2       1 188.  

 Thus simply given  (the H:O ratio), we know the product composition and can calculate 

the final temperature.  For example with =1.3 (rich combustion), we get, 
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 Adiabatic Flame Temperature: Assuming an initial temperature of -55 C (218 K) for the 

reactants, we find the adiabatic flame temperature using P=0 and HR=0, i.e., 
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 Writing out the summation for each product and reactant, and using the number of moles of 

each for our =1.3 flame we have,  
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 Since the enthalpy of formation for elements is zero, we get 
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 Data for hf of water and the sensible enthalpy changes for each species* can be found in a 

number of sources, e.g.,  the JANNAF tables. Using this data, one finds Tad2300K.  

 Minor Species Mole Fractions: We can write the following stoichiometric relationships 

between the minor species and the major species of our rich hydrogen/air flame (for 

emphasis, the minor species are written in bold letters).  Each reaction represents a method 

for producing the minor species using only the major products of our hydrogen/air flame. 
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 Now we can write the following expressions for the mole fractions of the minor species in 

terms of the major species Xi: 
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*It is not reasonable to assume that cp is constant in   
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 where we have used the fact that Kp for each of the stoichiometric reactions is simply a 

function of the formation equilibrium constants of the species in the reaction. For example 

for the reaction 

22 22 HOOH  +2  

 the equilibrium constant is given by 
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  since the formation equilibrium constant Kpf of an element is unity (by definition).  

 Using the Kpf from the JANNAF tables at 2300 K, the estimated Xi for the major species, 

and assuming a pressure of 1 bar, we get the values for the minor species Xi listed in the 

table below. As a comparison, the table below also includes results from a complete 

solution obtained with the STANJAN chemical equilibrium code.  While not completely 

accurate, the major-minor model does a good job of predicting the flame temperature (+25 

K or ~1% relative error) and the major species’ mole fractions (<1% relative error), and 

gives a reasonable estimate of the minor species’ mole fractions (within a 40% relative 

error, and certainly better than one order-of-magnitude).  Thus for rough approximations, 

the major-minor model is simple and reasonably accurate. 

 

Species/Tad Major-Minor 
Model 

Full Calculation Error(%) 

Tad 2300 K 2275 K 1.1 

 N2  59.1% 59.0% 0.17 

 H2O  31.5% 31.2% 0.96 

 H2  9.4%  9.4% 0 

H 0.30% (3000 ppm) 0.26% (2600 ppm) 15 

 OH  0.16% (1600 ppm) 0.13% (1300 ppm) 23 

 NO  220 ppm 180 ppm 22 

O2 49 ppm 36 ppm 39 

 NO2  3.4 ppb 2.5 ppb 36 

ppm=parts per million (10-6), ppb=parts per billion (10-9) 


