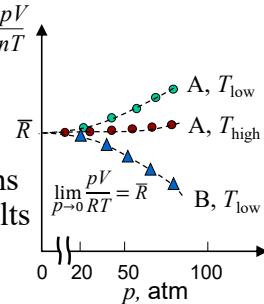


Imperfect (Real) Gases

- Ideal (tpg) gas law limited to “low” density (or pressure), “high” temperature conditions
 - later will see this is related to minimal (short range, repulsive) intermolecular interactions
- Other **p-v-T EoS** (Eqn. of State)
 - to account for molecular interactions in **real** gases \Rightarrow more accurate results
 - can evaluate in terms of
 - compressibility factor, Z

$$Z \equiv \frac{p\hat{v}}{RT}$$

$Z \neq 1$ represents non-ideal behavior
 f defined in terms of μ



Imperfect Gases-1
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Using Real Gas EoS

- Once we have our real gas p - v - T equation of state, can use it to find other relations

- Examples

- compressibilities $\alpha \equiv \frac{1}{V} \left. \frac{\partial V}{\partial T} \right|_p$
- caloric state relations $\kappa \equiv \frac{-1}{V} \left. \frac{\partial V}{\partial p} \right|_T$

from p-v-T EoS

$$dU = C_v dT + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] dV \quad \left(\frac{\partial p}{\partial T} \right)_V = \frac{\alpha}{\kappa}$$

$$dH = C_p dT + [1 - \alpha T] V dp \quad \text{from reciprocity}$$

Imperfect Gases-2
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Van der Waals EoS

- One of earliest corrections to ideal gas law was by Van der Waals (1873)
 - originally motivated by kinetic theory

$$\left(p + \frac{a}{\hat{v}^2}\right)(\hat{v} - b) = \bar{R}T$$

corrects for intermolecular attractive forces which reduce pressure from that predicted by ideal EoS

corrects for volume occupied by molecules, and thus repulsive forces

- which gives a compressibility factor

$$Z = 1 - \left(\frac{a}{\hat{v}} - \frac{ab}{\hat{v}^2} - pb\right)/\bar{R}T$$

- so $Z \rightarrow 1$ at high v , low p , high T

Examples Using Van der Waals EoS

- p-v-T derivatives/compressibilities for Van der Waals gas are

$$p = \frac{\bar{R}T}{\hat{v} - b} - \frac{a}{\hat{v}^2} \Rightarrow \kappa = \frac{-1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{-1}{\hat{v} (\partial p / \partial \hat{v})_T} = \frac{1}{v \left(\frac{\bar{R}T}{(\hat{v} - b)^2} - \frac{2a}{\hat{v}^3} \right)}$$

$$\Rightarrow \left(\frac{\partial p}{\partial T} \right)_V = \frac{\bar{R}}{\hat{v} - b}$$

$$\Rightarrow \alpha = \kappa \left(\frac{\partial p}{\partial T} \right)_V = \frac{\bar{R}/(\hat{v} - b)}{\hat{v} \left(\frac{\bar{R}T}{(\hat{v} - b)^2} - \frac{2a}{\hat{v}^3} \right)}$$

– and internal energy

$$dU = C_v dT + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] dV = C_v dT + \left[\frac{\bar{R}T}{\hat{v} - b} - p \right] dV = C_v dT + \frac{\hat{a}}{\hat{v}^2} dV$$

function of v only

= (dU/dV)_T

Comparison to Critical State

- Van der Waals EoS (WEOS) is cubic in v ; produces isotherms like
- Positive slopes unphysical for gas, but one isotherm has inflection point
 - 1st and 2nd deriv. of $p(v)$ are zero
- Match inflection point to critical point max T and p where liquid and gas coexist as unique phases
 - can show $a = \frac{27(\bar{R}T_c)^2}{64p_c}$ $b = \frac{\bar{R}T_c}{8p_c}$ can also write as $Z^3 - AZ^2 + BZ - (AB + 1) = 0$
 - insert these into WEOS and define **reduced T, p** $\Rightarrow \left(Z + \frac{1}{Z} \frac{27}{64} \frac{p_r}{T_r} \right) \left(1 - \frac{1}{8Z} \frac{p_r}{T_r} \right) = 1$
 - $T_r \equiv \frac{T}{T_c}; p_r \equiv \frac{p}{p_c}$ so $Z = Z(p_r, T_r)$ for WEOS gases

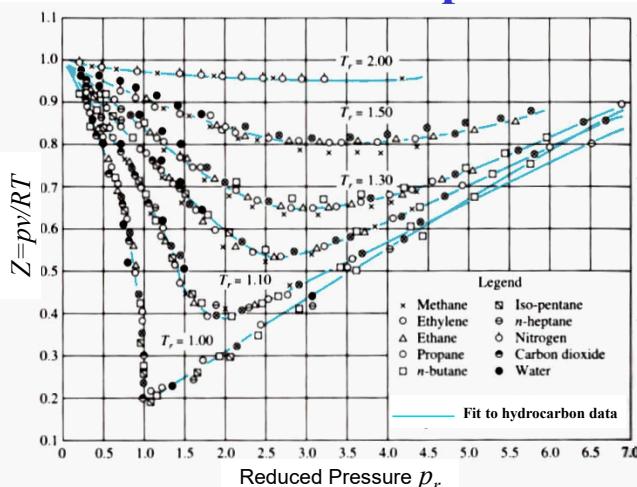
is there universal relationship for gases?

also gives $Z_c = 0.375$

AE/ME 6765

Imperfect Gases-5
Copyright © 2009, 2022, 2023 by Jerry M. Seitzman
All rights reserved.

Generalized Compressibility Chart



- Empirically shown that Z is nearly the same function of (p_r, T_r) for **many** gases (not WEOS relation)
- This relationship known as the **Principle of Corresponding States**
- Useful for estimating properties if more precise EoS data not available

Imperfect Gases-6
Copyright © 2009, 2022, 2023 by Jerry M. Seitzman
All rights reserved.

from Gour-Jen Su, Ind. Eng. Chem. **38**, 803 (1946)

AE/ME 6765

Critical Properties

*note $Z_c < 0.375$
(Z_c , WEOS)*

Gas	T_c (K)	p_c (atm)	\hat{v}_c (cm ³ /mol)	Z_c
Air	132.41	37.25	92.4	
Ar	150.72	47.99	75	0.291
*He	5.19	2.26	58	0.308
CO	132.91	34.53	93	0.294
*H ₂	33.24	12.80	65	0.304
N ₂	126.2	33.54	90	0.291
O ₂	154.78	50.14	74	0.292
CO ₂	304.20	72.90	94	0.275
H ₂ O	647.27	218.17	56	0.230
C ₂ H ₂ (acetylene)	309.5	61.6	113	0.274
C ₂ H ₆ (ethane)	305.48	48.20	148	0.285
C ₂ H ₄ (ethylene)	283.06	50.50	124	0.270
CH ₄ (methane)	190.17	45.8	99	0.290
C ₃ H ₈ (propane)	370.01	42.1	200	0.277

*unusual low T behavior

Imperfect Gases-7
Copyright ©2009, 2022, 2023 by Jerry M. Seitzman.
All rights reserved.
*Obert, Concepts of Thermodynamics,
McGraw-Hill (1960)*
AE/ME 6765

Higher Order EoS

- Van der Waal equation is a “two-constant” equation
 - better accuracy \Rightarrow more terms and more complex terms
- Virial EoS
$$\frac{p\hat{v}}{RT} = 1 + \frac{c_1(T)}{\hat{v}} + \frac{c_2(T)}{\hat{v}^2} + \frac{c_3(T)}{\hat{v}^3} + \dots$$
- Beattie-Bridgeman (1928)
 - 5 constants
$$\frac{p\hat{v}}{RT} = \frac{1}{\hat{v}} \left(1 - \frac{c}{\hat{v}T^3} \right) \left[\hat{v} + B_o \left(1 - \frac{b}{\hat{v}} \right) \right] - \frac{A_o \left(1 - \frac{a}{\hat{v}} \right)}{\hat{v}RT}$$
- Benedict-Webb-Rubin (1940)
 - 8 constants, usually applied for $\rho/\rho_{\text{crit}} < 2.5$
 - especially good for hydrocarbons *not isobaric compressibility* *can also handle liquid and liquid gas mixtures*

Imperfect Gases-8
Copyright ©2009, 2022, 2023 by Jerry M. Seitzman.
All rights reserved.
AE/ME 6765

Cubic EoS

- Cubic EoS (cubic in \hat{v}) often used
 - computationally less expensive, analytically tractable
$$p = \frac{\bar{R}T}{\hat{v}-b} - \frac{\Theta}{\hat{v}^2 + \delta\hat{v} + \varepsilon}$$
- Already noted Van der Waals was a cubic EoS
- Other examples
 - Redlich-Kwong (1949)
 - Peng-Robinson (1975)
 - like WEOS, R-K and P-R EoS
 - also $\alpha = \alpha(T_r)$
$$p = \frac{\bar{R}T}{\hat{v}-b} - \frac{a/\sqrt{T}}{\hat{v}(\hat{v}+b)}$$

$$p = \frac{\bar{R}T}{\hat{v}-b} - \frac{a\alpha}{\underbrace{\hat{v}(\hat{v}+b)+b(\hat{v}-b)}_{=\hat{v}^2 + 2b\hat{v} - b^2}}$$

can also handle liquid and liquid-gas mixtures

AE/ME 6765

Fugacity

- Instead of relying on expressions for Z , can also define gas properties of real (imperfect) gas using similar approach used for perfect gases
 - based on chemical potential
- For **single (pure)** gas

$$\mu \equiv \mu^o + \bar{R}T \ln(f/f^o)$$
 - $\mu^o = \mu^o(T)$
 - f is **fugacity** (units of pressure)
 - f^o is fugacity at standard state ($\mu = \mu^o$ at $f = f^o$)
 - for $f = p$ get TPG relation
 - for all gases, $f/p \rightarrow 1$ as $p \rightarrow 0$

AE/ME 6765

Measuring Fugacity

- We showed earlier $\hat{v} = \frac{\partial \mu}{\partial p} \Big|_T$ $\mu \equiv \mu^o + \bar{R}T \ln(f/f^o)$

$$\text{– for } f^o=1 \quad \hat{v} = \frac{\partial(\bar{R}T \ln f)}{\partial p} \Big|_T \Rightarrow \frac{\partial(\ln f)}{\partial p} \Big|_T = \frac{\hat{v}}{\bar{R}T}$$

- Consider constant T process

$$d(\ln f) = \frac{\hat{v}}{\bar{R}T} dp$$

- subtract $d(\ln p)$

$$d \ln f - d \ln p = \frac{\hat{v}}{\bar{R}T} dp - d \ln p$$

$$d \ln \left(\frac{f}{p} \right) = \left(\frac{\hat{v}}{\bar{R}T} - \frac{1}{p} \right) dp$$

Measuring Fugacity

$$d \ln \left(\frac{f'}{p'} \right) = \left(\frac{\hat{v}}{\bar{R}T} - \frac{1}{p'} \right) dp'$$

- Integrate from $p'=0 \rightarrow p$ ($f'/p'=1 \rightarrow f/p$)

$$\int_1^{f/p} d \ln \frac{f'}{p'} = \int_0^p \left(\frac{\hat{v}}{\bar{R}T} - \frac{1}{p'} \right) dp'$$

$$\ln \frac{f}{p} - \ln 1 = \boxed{\ln \frac{f}{p} = \int_0^p \left(\frac{\hat{v}}{\bar{R}T} - \frac{1}{p'} \right) dp'} = \int_0^p (Z-1) \frac{dp'}{p'}$$

$- f/p = 1 \Rightarrow \text{TPG}$

Integral represents nonideal behavior

$- \text{get fugacity from integrating RHS w/ experimental data}$

Real Gas Mixtures

- Fugacity is more commonly employed for mixtures of real (imperfect) gases
- Define **partial fugacity** f_i by

$$\mu_i \equiv \mu_i^o + \bar{R}T \ln f_i$$
 - similar to pure gas, $f_i / p_i \rightarrow 1$ as $p_i \rightarrow 0$ and $p \rightarrow 0$
 - similar to TPG $\mu_i^o = \mu^o(T)$ for pure i
 - BUT $f_i = f_i(p, T, \chi_j)$
 - partial fugacity can depend on composition

Determining Partial Fugacity

- Similar to pure gas approach, we have

$$\left. \frac{\partial \mu_i}{\partial p} \right|_{T, x_{j \neq i}} = \bar{v}_i = \bar{R}T \left. \frac{\partial \ln f_i}{\partial p} \right|_{T, x_{j \neq i}}$$

- and for constant T and χ_j

$$d\mu_i = \bar{R}T d \ln f_i = \bar{v}_i dp$$

$$d \ln f_i - d \ln p_i = \frac{\bar{v}_i}{\bar{R}T} dp - d \ln p_i$$

$\cancel{p_i = p \chi_i}$

$$d \ln \frac{f_i}{p_i} = \frac{\bar{v}_i}{\bar{R}T} dp - d \ln p - \cancel{d \ln \chi_i} \quad 0$$

$$\ln \frac{f_i}{p_i} = \int_0^p \left(\frac{\bar{v}_i}{\bar{R}T} - \frac{1}{p'} \right) dp'$$

Determining Partial Fugacity

$$\ln \frac{f_i}{p_i} = \int_0^p \left(\frac{\bar{v}_i}{R T} - \frac{1}{p'} \right) dp'$$

- Analogous relation to single imperfect gas
 - but must now measure partial molar volume for many compositions at each (T, p)
- If interactions between components are not too strong (e.g., ρ not too high), can assume ideal solution result

Lewis-Randall Rule $f_i = \chi_i f^i \leftarrow$ fugacity of pure i at p, T