

## Inelastic Collisions

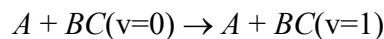
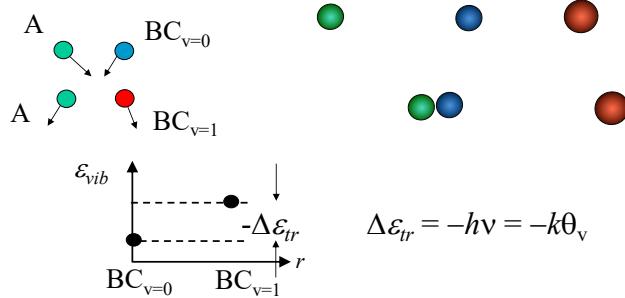
- So far we have examined elastic collisions
  - defined as no (net) change in total translational kinetic energy of colliders
    - so  $g' = g$
  - usually this means no (net) change in internal energies of colliders
- **Inelastic collisions** involve changes in internal energies of collider(s)
  - can be rotational, vibrational, electronic and/or chemical (internuclear bond) energies
- **Any net change in internal energy must be balanced by change in translational kinetic energy**
  - note: it is possible to have exchange between internal energies of colliders *without* change in translational energy
    - but not typically an important process

Inelastic Collisions -1  
Copyright ©2009, 2022, 2023-2025  
by Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Inelastic Coll.: Vibrational Excitation

- Let's look at one example: a collision that increases the vibrational energy of one of the colliders
  - without changing any other internal energy mode

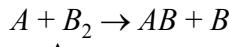
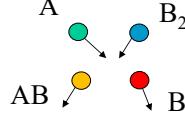
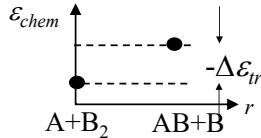


Inelastic Collisions -2  
Copyright ©2009, 2022, 2023-2025  
by Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Inelastic Coll.: Chemical Reaction

- Another example: endothermic chemical reaction
  - that does not change other internal energy modes
- Recall *endothermic*: increases chemical energy
  - exothermic*: decreases chemical energy



AE/ME 6765

## Inelastic Collisions: Rate Expression

- We already have a rate expression for bimolecular elastic collisions

$$z_{AB} = \frac{n_A n_B}{\delta_{AB}} \int_0^{\infty} \left( \frac{m_{AB}^*}{2\pi k T} \right)^{3/2} e^{-\frac{m_{AB}^* g^2}{2kT}} \sigma_{AB}^T(g) 4\pi g^3 dg$$

- How can we adjust this to account for inelastic collisions?
- What are the differences between elastic and inelastic collisions?

AE/ME 6765

## Conservation Laws

- Begin by reviewing conservation laws in CM coordinates
- **Momentum conservation**
  - momentum equation does not change for inelastic collisions
  - center-of-mass speed still conserved ( $w_i = w_i'$ )
- **Energy conservation**
  - must include internal energy change,  $\Delta \varepsilon_{int}$

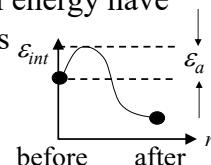
$$\begin{aligned} \frac{1}{2}(\overline{m_A + m_B})w^2 + \frac{1}{2}m_{AB}^*g^2 &= \frac{1}{2}(\overline{m_A + m_B})w'^2 + \frac{1}{2}m_{AB}^*g'^2 + \Delta \varepsilon_{int} \\ \frac{1}{2}m_{AB}^*g^2 &= \frac{1}{2}m_{AB}^*g'^2 + \Delta \varepsilon_{int} \end{aligned}$$

Inelastic Collisions - 5  
Copyright ©2009, 2022, 2023-2025  
by Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Activation Energy

- However, there is a limit on the relative speed after a collision
 
$$\frac{1}{2}m_{AB}^*g^2 = \frac{1}{2}m_{AB}^*g'^2 + \Delta \varepsilon_{int}$$
  - $g_i' \geq 0 \Rightarrow \frac{1}{2}m_{AB}^*g^2 \geq \Delta \varepsilon_{int}$
- So inelastic collisions can have a translational “energy barrier”, often denoted as the **activation energy**,  $\varepsilon_a$ 
  - limits which collisions have enough relative translational kinetic energy to cause the inelastic process to occur
  - while only collisions that raise internal energy have  $\Delta \varepsilon_{int} > 0$ , more complex analysis shows that even  $\Delta \varepsilon_{int} < 0$  collisions can have an activation energy, i.e.,  $\varepsilon_a > \Delta \varepsilon_{int}$



Inelastic Collisions - 6  
Copyright ©2009, 2022, 2023-2025  
by Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Bimolecular Collision Rate - Energy

- First let's rewrite the (elastic)  $z_{AB}$  in terms of relative translational kinetic energy,  $\varepsilon_{rt}$

$$\begin{aligned}
 z_{AB} &= \frac{n_A n_B}{\delta} \int_0^{\infty} \left( \frac{m_{AB}^*}{2\pi kT} \right)^{3/2} e^{-\frac{m_{AB}^* g^2}{2kT}} \sigma_{AB}^T 4\pi g^3 dg & \varepsilon_{rt} &= \frac{1}{2} m_{AB}^* g^2 \\
 &= \frac{n_A n_B}{\delta} \left( \frac{m_{AB}^*}{2\pi kT} \right)^{3/2} \int_0^{\infty} e^{-\frac{\varepsilon_{rt}}{kT}} \sigma_{AB}^T 8\pi \frac{\varepsilon_{rt} d\varepsilon_{rt}}{(m_{AB}^*)^2} & d\varepsilon_{rt} &= m_{AB}^* g dg \\
 &= \frac{n_A n_B}{\delta} \left( \frac{8kT}{\pi m_{AB}^*} \right)^{1/2} \left( \frac{1}{kT} \right)^2 \int_0^{\infty} e^{-\frac{\varepsilon_{rt}}{kT}} \sigma_{AB}^T (\varepsilon_{rt}) \varepsilon_{rt} d\varepsilon_{rt} \\
 z_{AB} &= \frac{n_A n_B}{\delta} \bar{g} \left( \frac{1}{kT} \right)^2 \int_0^{\infty} e^{-\frac{\varepsilon_{rt}}{kT}} \sigma_{AB}^T (\varepsilon_{rt}) \varepsilon_{rt} d\varepsilon_{rt}
 \end{aligned}$$

AE/ME 6765

Inelastic Collisions -7  
Copyright ©2009, 2022, 2023-2025  
By Jerry M. Seitzman. All rights reserved.

## Inelastic Collision Rate

- We can write the bimolecular collision rate for a process that results in a specific *inelastic* energy change (and dropping the *rt* subscripts)

$$z_{AB}^{process} = \frac{n_A n_B}{\delta} \bar{g} \left( \frac{1}{kT} \right)^2 \int_0^{\infty} e^{-\frac{\varepsilon}{kT}} \sigma_{AB}^{process}(\varepsilon) \varepsilon d\varepsilon$$

– where we have defined a cross-section for the process that has the following behavior

$$\sigma_{AB}^{process}(\varepsilon) = \begin{cases} 0 & \varepsilon \leq \varepsilon_a \\ \sigma_{int}(\varepsilon) & \varepsilon > \varepsilon_a \end{cases} \quad \begin{array}{l} \text{the inelastic collision process} \\ \text{does not occur for relative} \\ \text{translational energies below} \\ \text{the activation energy} \end{array}$$

- Can then rewrite the integral limits since integrand is zero for  $\varepsilon < \varepsilon_a$

$$z_{AB}^{process} = \frac{n_A n_B}{\delta} \bar{g} \frac{1}{(kT)^2} \int_{\varepsilon_a}^{\infty} e^{-\frac{\varepsilon}{kT}} \sigma_{int}(\varepsilon) \varepsilon d\varepsilon$$

AE/ME 6765

Inelastic Collisions -8  
Copyright ©2009, 2022, 2023-2025  
By Jerry M. Seitzman. All rights reserved.

## Inelastic Collision Rate: Example

- Assume  $\sigma_{int}(\varepsilon) = \sigma_{max} \left(1 - \frac{\varepsilon_a}{\varepsilon}\right)$  for  $\varepsilon > \varepsilon_a$   
leads to simple result

$$z_{AB}^{process} = \frac{n_A n_B \bar{g}}{\delta(kT)^2} \int_{\varepsilon_a}^{\infty} e^{-\varepsilon/kT} \sigma_{max} \left(1 - \frac{\varepsilon_a}{\varepsilon}\right) \varepsilon d\varepsilon$$

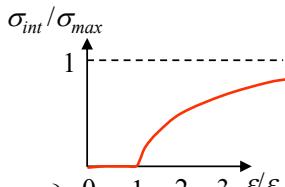
$$= \frac{n_A n_B \bar{g} \sigma_{max}}{\delta(kT)^2} \left\{ \int_{\varepsilon_a}^{\infty} e^{-\varepsilon/kT} \varepsilon d\varepsilon - \int_{\varepsilon_a}^{\infty} e^{-\varepsilon/kT} \varepsilon_a d\varepsilon \right\}$$

$$z_{AB}^{process} = \frac{n_A n_B \bar{g} \sigma_{max}}{\delta} e^{-\varepsilon_a/kT} \left[ -kT \varepsilon e^{-\varepsilon/kT} \right]_{\varepsilon_a}^{\infty} = kT \varepsilon_a e^{-\varepsilon_a/kT}$$

*fraction of high energy collisions*  
 $\propto \exp(-\varepsilon_a/kT)$

$$z_{AB}^{process} = \frac{n_A n_B \bar{g} \sigma_{avg}(T)}{\delta} e^{-\varepsilon_a/kT} \quad \boxed{- (kT)^2 e^{-\varepsilon_a/kT} \left(1 + \frac{\varepsilon_a}{kT}\right)}_{\varepsilon_a}^{\infty} = (kT)^2 e^{-\varepsilon_a/kT} \left(1 + \frac{\varepsilon_a}{kT}\right)$$

**more general expression**

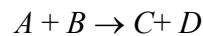


Inelastic Collisions -9  
Copyright ©2009, 2022, 2023-2025  
By Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Chemical Reaction Rates: Comparison

- For a chemical reaction, it is common to define a (forward) **reaction rate constant,  $k_f$**  such that



molar volumetric production rate of species  $C$

$$\frac{dn_C}{dt} \equiv k_f n_A n_B \quad \begin{matrix} \text{molar} \\ \text{concentrations} \\ \text{of reactants} \end{matrix}$$

- Compare this to our simple inelastic bimolecular collision rate

$$z_{AB}^{process} = n_A n_B \bar{g} \sigma_{max} e^{-\varepsilon_a/kT}$$

– and using  $\bar{g} \propto \sqrt{T}$

**simple collision model for reaction rate constant**  $\Rightarrow k_f = \sigma_{max} \bar{g} e^{-\varepsilon_a/kT}$

$$\boxed{k_f = AT^{1/2} e^{-\varepsilon_a/kT}}$$

- Compare this to a standard empirical model for  $k$ , (modified) **Arrhenius Rate**

$$k_f(T) = AT^n e^{-\varepsilon_a/kT}$$

**collision (kinetic) theory**  
**properly captures the**  
**underlying physics of reactions**

Inelastic Collisions -10  
Copyright ©2009, 2022, 2023-2025  
By Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Forward, Backward Chem. Reaction Rates

- How will concentrations change in time?
- Consider forward and backward reactions



- At equilibrium  $\frac{dn_C}{dt} = 0$

$$\Rightarrow k_f n_A^* n_B^* = k_b n_C^* n_D^* \leftarrow \text{equil.}$$

**Law of Mass Action (again!)**

$$K_c(T) \equiv \frac{k_f(T)}{k_b(T)} = \frac{n_C^* n_D^*}{n_A^* n_B^*}$$

*Note: even if not in chemical equilibrium,  $k_f/k_b = K_c$ !  
- collision properties ( $\sigma, \bar{g}$ ) for given collision don't depend on chemical composition*

**AE/ME 6765**

## Equilibrium Constant

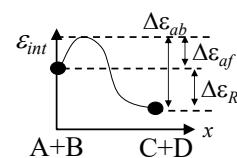
- Examine equilibrium constant based on the more general collision rate model with  $\sigma_{avg} = \sigma(T)$



from reduced mass terms  
with  $m_A + m_B = m_C + m_D$

$$= \sqrt{\frac{m_C m_D}{m_A m_B}} \frac{\sigma_f(T)}{\sigma_b(T)} e^{-(\varepsilon_{af} - \varepsilon_{ab})/kT}$$

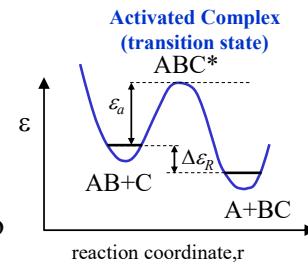
$$K_c = C \underbrace{\frac{\sigma_f(T)}{\sigma_b(T)} e^{-\Delta \varepsilon_R/kT}}_{\text{related to } Q \text{ ratio from Statistical Mechanics}}$$



**AE/ME 6765**

## Collision Complex Model

- Why is there an activation energy in many inelastic collisions?
- **Activated Collision Complex**
  - based on assumption that for the inelastic energy transfer process to take place, molecules temporarily form unstable collision complex that has high energy
  - so activation energy required to form the complex
  - example: chemical reaction



## Interaction Time Constraints

- Another energy barrier source occurs in vibrational and translational energy exchanges (collisions)
  - even when the vibrational energy is decreasing
- Consider vibrationally excited CO colliding with Ar
  - to remove a quanta of vibr. energy, Ar must “hit” C or O nucleus when it is moving quickly
- $v_{vib,CO} \sim 6 \times 10^{13} \text{ Hz}$ , so period  $\tau_{vib} \sim 2 \times 10^{-14} \text{ s}$  (0.02ps)
- Ar is in vicinity of CO for time  $\tau_{coll} \sim d_{CO}/g \sim 0.4 \text{ nm/g}$ 
  - for  $g = 400 \text{ m/s}$ ,  $\tau_{coll} \sim 10^{-11} \text{ s}$  (10ps), so  $\tau_{vib}/\tau_{coll} \sim 0.002$ 
    - Ar will most likely impact when CO is at maximum extension (when KE is small)

⇒ highly unlikely it can de-excite CO vibration
- Requiring  $\tau_{vib}/\tau_{coll} \geq 0.01$  (for example)  $\Rightarrow g_{min} = 2 \text{ km/s} \Rightarrow \varepsilon_a$

## Inelastic Collisions w/o Energy Barrier

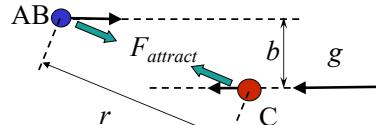
- A number of important inelastic collisions do not require an activation energy, for example
  - radical-radical exchange  
e.g.,  $\text{OH} + \text{HO}_2 \rightarrow \text{O}_2 + \text{H}_2\text{O}$
  - 3-body association reactions  
e.g.,  $\text{O} + \text{O} + \text{Ar} \rightarrow \text{O}_2 + \text{Ar}$
  - de-excitation (quenching) of electronically excited states  
e.g.,  $\text{NO(A)} + \text{N}_2 \rightarrow \text{NO(X)} + \text{N}_2$
- These collisions depend on long-range attractive potentials to form the collision complex that allows the inelastic process to occur
  - is their cross-section energy dependent?

Inelastic Collisions -15  
Copyright ©2009, 2022, 2023-2025  
by Jerry M. Seitzman. All rights reserved.

**AE/ME 6765**

## Centrifugal Barrier Model

- Simple model for complex formation w/o activation energy, assumes
  - molecules must be able to get “close” enough to change internal energy; complex must exist for some minimal time for process to occur – molecules must “orbit”
  - then process will happen
- Attractive forces will keep complex together
  - for neutral species  $V_{attr}(r) = \sum \frac{a}{r^\alpha}$   $\alpha \geq 3$
  - **only if** attractive force larger than **centrifugal barrier** (or momentum will cause molecules to just “pass by”)



$$E_{angular} = \frac{1}{2} \frac{L^2}{I} \Rightarrow V_{cb}(r) \equiv \frac{L^2}{2m^* r^2} = \frac{(m^* g b)^2}{2m^* r^2} = \frac{m^* g^2 b^2}{2r^2} = \frac{\varepsilon b^2}{r^2} \quad \varepsilon = \frac{1}{2} m^* g^2$$

Inelastic Collisions -16  
Copyright ©2009, 2022, 2023-2025  
by Jerry M. Seitzman. All rights reserved.

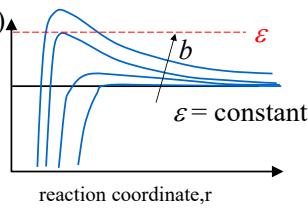
**AE/ME 6765**

## Centrifugal Barrier: Cross-Section

- So can write long-range potential including effective repulsive centrifugal barrier  $V(r)$

$$V(r) = \varepsilon b^2 / r^2 - \sum a/r^\alpha$$

- For fixed  $\varepsilon$ , looks like →
  - for each  $b$ , there is maximum in  $V(r)$
  - if  $\varepsilon \geq V_{max}(b, \varepsilon)$ , the collision complex can form



- So for a given relative KE, formation of the complex requires a limit on the impact parameter

$$b \leq b_o(\varepsilon) \text{ (the impact parameter for } V_{max} = \varepsilon)$$

- Can model cross-section

$$\text{as } \sigma_{cb} = \pi b_o^2(\varepsilon), z_{AB}^{cb} = n_A n_B \bar{g} \frac{1}{(kT)^2} \int_0^{\infty} e^{\frac{-\varepsilon}{kT}} \pi b_o^2(\varepsilon) \varepsilon d\varepsilon = n_A n_B \bar{g} \sigma(T)$$

AE/ME 6765

## Centrifugal Barrier: Example

- For simple dipole-induced dipole attraction model

$$V(r) = \varepsilon b^2 / r^2 - a/r^6$$

– e.g., LJ-like  $a/r^6 = \varepsilon_{\text{well}} (d/r)^6$

- Then get peak from  $r_o = \left( \frac{3a}{\varepsilon b^2} \right)^{1/4} \Rightarrow V(r_o) = 2\varepsilon^{3/2} \frac{b^3}{3^{3/2} a^{1/2}}$   
 $dV(r)/dr = 0$   
 – and for  $V(r_o) = \varepsilon$   $b_o^2 = \frac{3}{2^{2/3}} \left( \frac{a}{\varepsilon} \right)^{1/3}$

$$\int_0^{\infty} e^{-\alpha x} x^{\beta} dx = \frac{\Gamma(1+\beta)}{\alpha^{1+\beta}}$$

- So “averaged” cross-section

$$\sigma_{avg}(T) = \frac{1}{(kT)^2} \int_0^{\infty} e^{\frac{-\varepsilon}{kT}} \pi \frac{3a^{1/3}}{2^{2/3}} \frac{\varepsilon}{\varepsilon^{1/3}} d\varepsilon = \frac{3\pi a^{1/3}}{2^{2/3}} \frac{1}{(kT)^2} \int_0^{\infty} e^{\frac{-\varepsilon}{kT}} \varepsilon^{2/3} d\varepsilon$$

*decreases with T*

$$= \frac{3\pi a^{1/3}}{2^{2/3}} \frac{1}{(kT)^2} \frac{\Gamma(5/3)}{(kT)^{-5/3}} \approx 0.903 \frac{3\pi a^{1/3}}{2^{2/3}} \frac{1}{(kT)^{1/3}}$$

*Rate constant k(T) = σ<sub>avg</sub>(T) g; increases with T ∝ T<sup>1/6</sup>*

AE/ME 6765

## Inelastic Collisions: Summary

- For bimolecular collision that involves defined inelastic change, simple kinetic theory result is
 
$$z_{AB}^{inelastic} = \frac{n_A n_B}{\delta} \bar{g} \left( \frac{1}{kT} \right)^2 \int_{\varepsilon_a}^{\infty} e^{-\varepsilon_{rt}/kT} \sigma_{AB}^{inelastic}(\varepsilon_{rt}) \varepsilon_{rt} d\varepsilon_{rt}$$
  - neglects orientation of molecules in the collision
  - in general, inelastic process cross-section will depend on  $\varepsilon_{rt}$  and thus contribute additional  $T$  dependence to collision rate
- Activation energy  $\varepsilon_a$  = minimum relative translational kinetic energy ( $\varepsilon_{rt}$ ) required for collision to succeed
  - can exist even for inelastic process that reduces internal energy of the molecules, for example due to activated complex intermediate
  - for  $\varepsilon_a > 0$   $z_{AB}^{inelastic} = n_A n_B F(T) [e^{-\varepsilon_a/kT}]$  **dominates T dep. for  $T \ll \varepsilon_a/k$**
- Rate constants or averaged cross-sections for forward and backward processes related by equilibrium considerations
  - if, for example, translational mode remains in equilibrium

**AE/ME 6765**