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Inelastic Collisions
• So far we have examined elastic collisions

– defined as no (net) change in total translational kinetic 
energy of colliders

• so g = g

– usually this means no (net) change in internal energies of 
colliders

• Inelastic collisions involve changes in internal energies of 
collider(s)
– can be rotational, vibrational, electronic and/or chemical 

(internuclear bond) energies

• Any net change in internal energy must be balanced by 
change in translational kinetic energy
– note: it is possible to have exchange between internal 

energies of colliders without change in translational energy
• but not typically an important process
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Inelastic Coll.: Vibrational Excitation
• Let’s look at one example: a collision that increases 

the vibrational energy of one of the colliders

– without changing any other internal energy mode

BCv=0
A

A BCv=1

A + BC(v=0) → A + BC(v=1)

-tr tr = −h = −kv

vib

BCv=0 BCv=1

r
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Inelastic Coll.: Chemical Reaction
• Another example: endothermic chemical reaction

–  that does not change other internal energy modes

• Recall endothermic: increases chemical energy

– exothermic: decreases chemical energy

B2
A

AB B

chem

A+B2 AB+B

A + B2 → AB + B

-tr tr = −R 

r
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Inelastic Collisions: Rate Expression

• We already have a rate expression for bimolecular 

elastic collisions

• How can we adjust this to account for inelastic 

collisions?

• What are the differences between elastic and inelastic 

collisions?
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Conservation Laws

• Begin by reviewing conservation laws in CM coordinates

• Momentum conservation

– momentum equation does not change for inelastic 

collisions

– center-of-mass speed still conserved (wi=wi′)

• Energy conservation

– must include internal energy change, int

( ) ( ) intABBAABBA gmwmmgmwmm +++=++ 2*22*2
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Activation Energy
• However, there is a limit on the 

relative speed after a collision

–   gi′  0

• So inelastic collisions can have a translational “energy 

barrier”, often denoted as the activation energy, a 

– limits which collisions have enough relative translational 

kinetic energy to cause the inelastic process to occur

– while only collisions that raise internal energy have 

int > 0, more complex analysis shows

that even int < 0 collisions can have

an activation energy, i.e., a>int 

 ½ m*
AB g2  int

intABAB gmgm += 2*2*
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r
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Bimolecular Collision Rate - Energy
• First let’s rewrite the (elastic) zAB in terms of relative 

translational kinetic energy, rt
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Inelastic Collision Rate

• We can write the bimolecular collision rate for a process 
that results in a specific inelastic energy change (and 
dropping the rt subscripts)

– where we have defined a cross-section for the process that 
has the following behavior

• Can then rewrite the integral limits since integrand is zero 
for  < a
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Inelastic Collision Rate: Example
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Chemical Reaction Rates: Comparison

• For a chemical reaction,
it is common to define a
(forward) reaction rate 
constant, kf such that

• Compare this to our simple 
inelastic bimolecular 
collision rate

– and using

• Compare this to a standard
empirical model for k, 
(modified) Arrhenius Rate
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simple collision 
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• How will concentrations change in time?

• Consider forward and backward reactions

• At equilibrium

Forward, Backward Chem. Reaction Rates
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- collision properties (, തg) for given collision don’t depend on chemical composition

Inelastic Collisions -12

School of Aerospace Engineering

Copyright  © 2009, 2022, 2023-2025 

by Jerry M. Seitzman. All rights reserved.

AE/ME 6765

• Examine equilibrium constant based on the more 

general collision rate model with avg=  (T
 )

Equilibrium Constant
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Collision Complex Model

• Why is there an activation energy in many inelastic 
collisions?

• Activated Collision Complex

– based on assumption that for
the inelastic energy transfer 
process to take place, 
molecules temporarily form
unstable collision complex that 
has high energy

– so activation energy required to 
form the complex

– example: chemical reaction



AB+C

reaction coordinate,r

A+BC

ABC*

R

a

Activated Complex

(transition state)
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Interaction Time Constraints
• Another energy barrier source occurs in vibrational and 

translational energy exchanges (collisions)
– even when the vibrational energy is decreasing

• Consider vibrationally excited CO colliding with Ar
– to remove a quanta of vibr. energy, Ar must “hit” C or O 

nucleus when it is moving quickly

• vib,CO~61013 Hz, so period vib~210-14s (0.02ps)

• Ar is in vicinity of CO for time coll~dCO/g ~0.4nm/g

– for g=400 m/s, coll~10-11s (10ps), so vib/coll~0.002

• Ar will most likely impact when CO is at maximum 
extension (when KE is small)

 highly unlikely it can de-excite CO vibration

• Requiring vib/coll0.01 (for example)gmin=2 km/sa

CO

g
Ar
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Inelastic Collisions w/o Energy Barrier

• A number of important inelastic collisions do not require 

an activation energy, for example

– radical-radical exchange 

e.g.,   OH+HO2→O2+H2O

– 3-body association reactions

e.g.,    O+O+Ar→O2+Ar

– de-excitation (quenching) of electronically excited states

e.g.,   NO(A)+N2→NO(X)+N2

• These collisions depend on long-range attractive potentials 

to form the collision complex that allows the inelastic 

process to occur

– is their cross-section energy dependent?
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Centrifugal Barrier Model

• Simple model for complex formation w/o activation 
energy, assumes

– molecules must be able to get “close” enough to change 
internal energy; complex must exist for some minimal 
time for process to occur – molecules must “orbit”

– then process will happen

• Attractive forces will keep
complex together

– only if attractive force larger than centrifugal barrier 
(or momentum will cause molecules to just “pass by”)
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Centrifugal Barrier: Cross-Section
• So can write long-range potential including effective 

repulsive centrifugal barrier

        V (r) =  b
2 / r2 − a/r

• For fixed , looks like →

– for each b, there is maximum
in V(r)

– if   Vmax(b,), the collision complex can form

• So for a given relative KE, formation of the 
complex requires a limit on the impact parameter
       b   bo (the impact parameter for Vmax= )

• Can model cross-section 
as cb = bo
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Centrifugal Barrier: Example
• For simple dipole-induced dipole attraction model

                V (r) =  b
2 / r2 − a/r6

– e.g., LJ-like a/r6 = well (d/r)6

• Then get peak from 

dV(r)/dr = 0

– and for V(ro) =  

• So “averaged” cross-section
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Inelastic Collisions: Summary
• For bimolecular collision that involves defined inelastic change, 

simple kinetic theory result is

– neglects orientation of molecules in the collision

– in general, inelastic process cross-section will depend on rt and 
thus contribute additional T dependence to collision rate 

• Activation energy a = minimum relative translational kinetic 
energy (rt) required for collision to succeed

– can exist even for inelastic process that reduces internal energy of 
the molecules, for example due to activated complex intermediate

– for a>0

• Rate constants or averaged cross-sections for forward and 
backward processes related by equilibrium considerations

– if, for example, translational mode remains in equilibrium
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