

Equilibrium Constant

- **Goal**

- find equilibrium composition $\sum_i \nu_i M_i = 0$
for “single reaction”
- for TPG mixture $\sum_i \nu_i \mu_i = \sum_i \nu_i (\mu_i^o + \bar{R}T \ln p_i)$
- at equilibrium $= 0$
*equilibrium composition values denoted by ** $-\frac{\sum_i \nu_i \mu_i^o}{\bar{R}T} = \sum_i \nu_i \ln p_i^* = \sum_i \ln(p_i^*)^{\nu_i}$
sum of ln's is ln of product $= \ln \prod_i p_i^{*\nu_i}$
Equilibrium Constant $K_p \equiv \prod_i p_i^{*\nu_i}$
constrains equilibrium composition of TPG mixture in terms of partial pressures

Law Mass Action - 1
Copyright © 2021 by Jerry M. Seitzman. All rights reserved.

AE/ME 6765

Law of Mass Action

- From previous expression $K_p = e^{-\sum_i \nu_i \mu_i^o / \bar{R}T}$
- K_p solely a function of T for a TPG mixture, or $K_p = K_p(T)$
- one form of what is known as **Law of Mass Action**
- Example: $O_2 + N_2 \leftrightarrow 2NO$ *2 possible chemical “states” for our system: 1) only O_2 and N_2 ; 2) only NO*
 $K_p = \frac{(p_{NO}^*)^2}{p_{O_2}^* p_{N_2}^*} = e^{\frac{-1}{\bar{R}T} (2\mu_{NO}^o - \mu_{O_2}^o - \mu_{N_2}^o)}$ *unless $T=0$, $0 < K_p < \infty$*
 \Rightarrow *some finite amount of ALL three species*
- Example: $O_2 \leftrightarrow 2O$ *unitless*
 $K_p = \frac{(p_O^*)^2}{p_{O_2}^*} = e^{\frac{-1}{\bar{R}T} (2\mu_O^o - \mu_{O_2}^o)}$ *because we dropped p^o (=1?) from $\ln(p/p^o)$ in μ expression for TPG*
has pressure units?
- Standard Gibbs Free Energy (change) for given “reaction”, ΔG^o or ΔG_T^o (it is function of T) $\Delta G_T^o \equiv \sum_i \nu_i \mu_i^o$
 $K_p(T) = e^{-\Delta G_T^o / \bar{R}T}$

Law Mass Action - 2
Copyright © 2021 by Jerry M. Seitzman. All rights reserved.

AE/ME 6765

Mole Fractions and Concentrations

- Can write equilibrium constant expression in terms of **mole fractions**

$$K_p(T) = \prod_i p_i^{*v_i} = \prod_i (\chi_i^* p)^{v_i} = p^{\sum v_i} \prod_i \chi_i^{*v_i}$$
 - since K_p not function of p , then RHS of expression is a constant for given T
 - e.g., if $\prod_i \chi_i^{v_i} \uparrow$ then $\prod_i \chi_i^{v_i} \downarrow$
- Equil. constant for **concentrations**

$$K_c(T) \equiv \prod_i [M_i]^{v_i} = \frac{K_p(T)}{(\bar{R}T)^{\sum v_i}}$$
 - $[M] \equiv n_M/V$
 - e.g., moles/cm³

Imperfect Gases

- For imperfect gases, can follow similar approach to perfect gases, but use fugacity to define an equilibrium constant
 - as before for a given “reaction” $\sum_i v_i M_i = 0$
 - $0 = \sum_i v_i \mu_i^* \Rightarrow -\frac{\sum_i v_i \mu_i^*}{\bar{R}T} = \sum_i v_i \ln f_i^*$
 - equilibrium constant

$$K_f \equiv \prod_i f_i^{*v_i}$$

$$K_f(T) = e^{-\sum_i v_i \mu_i^* / \bar{R}T} = e^{-\Delta G_f^o / \bar{R}T}$$
 - note: if we used p, K_p for imperfect gases,
 - would get $K_p = K_p(T, p)$
 - not as useful since p, T dependence not separated