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Mathematical Property Relationships

• We have started to define certain TD properties

– m, V, U, S, T, p, H, G, F

• and the relationships between them

– state relationships/equations

• How can we use basic mathematical identities to help

• For example,  

• Similarly
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Identities

• These are exact differentials, so we can deduce the 

following (i.e., from                           )
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van’t Hoff Relation

• Consider

• Then for 2 states with same T
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Maxwell Relations
• For smooth, continuous functions, we have the following 

relation from Calculus

– if we can write an exact differential

– then

• Apply this to previous exact differentials (dU, dH, etc.)
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Maxwell Relations

• Can get similar results from the chemical potential 

terms, e.g., 
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Example
• One use of Maxwell Relations is construction of equation-of-

state information

– e.g., how to relate U to measureable properties (p, T, V)

• For non-reacting mixture, let’s assume we can measure (T,V)

– Gibb’s

• From Maxwell Relations
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Variable Transformations
• Another useful mathematical relation

– cyclic rule (comes from chain rule)

• If we have a 3D surface function 

– f (x, y, z) = 0

x=x(y, z);  y=y(x, z)    then 

• Also

• Example: if we need          and we know
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