
Introductory Gas Kinetic Theory

- Approach to understanding gas properties - both equilibrium and nonequilibrium (rates) by examining
 - translational **motions** of molecules and
 - their interactions, called **collisions**
- In most systems of interest, there are large number of molecules present
 - SATP $\sim 3 \times 10^{19}$ molec/cm³ or in $V=(10\mu\text{m})^3$ we have 30×10^9 molecules \gg human population
 - each molecule in constant state of motion and with different velocities
 -
 -
 - too many molecules to follow them all individually**
 \Rightarrow use statistical approach

Molecular Models-1
Copyright © 2009, 2022, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Random (Statistical) Motion

- Break motion into **group** and **random** components

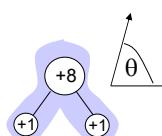
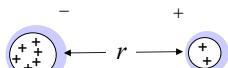
$$\vec{C} = \bar{\vec{C}} + \tilde{\vec{C}}$$

$\bar{\vec{C}}$ avg. motion or "group" velocity $\tilde{\vec{C}}$ random motion or "thermal" velocity
- Random motion is free motion of molecules, until a "collision" with another molecule or surface
 - free motion means molecule moves in straight line between collisions
 - significant time spent in free/straight-line motion; this is why gas is different from liquid/solid
 - why? – related to large spacing between molec.

$d \sim 3\text{\AA} = 3 \times 10^{-8} \text{ cm}$; $\Delta_{\text{avg}} \sim n^{-1/3}$ @SATP = $3 \times 10^{-7} \text{ cm}$

$\Delta/d \sim O(10)$ *later will show mean free path $\lambda \gg \Delta \gg d$*

Molecular Models-2
Copyright © 2009, 2022, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.



AE/ME 6765

Summary: Gas Kinetic Theory

- Examines properties of statistical motion of all molecules, not trying to follow each one
 - valid only for large numbers of molecules
- Assumes molecules spend most of their time moving in straight lines between collisions
- But molecules do interact
 - *need models to describe molecular interactions*

Molecular Models

- How do molecules interact (“collide”)?
 - through force fields
 - attractive: electrostatic, e.g., $- \leftrightarrow +$ (, gravity, ...)
 - repulsive: electrostatic, e.g., $- \leftrightarrow -$ (,Pauli exclusion,...)
- Simplifications to force models, often assume
 - 1) only **elastic collisions**,
no internal energy changes
 - 2) **spherically symmetric** force fields
 - only function of separation (r), not θ, ϕ
 - not strictly true, e.g., polar molecule like H_2O
(but rotations tend to average out directionality)

Intermolecular Potentials

- Model **short range attractive** intermolecular forces of **neutral** molecules with electrostatic potentials charged

$$V_{\text{attr}}(r) = - \sum_{\alpha=1}^{\infty} \frac{B_{\alpha}}{r^{\alpha}}$$

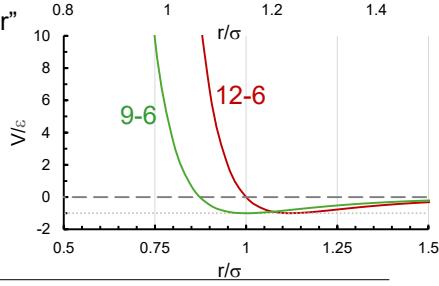
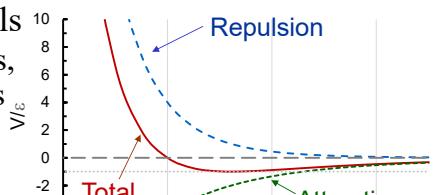
$$F = - \frac{dV}{dr} = \sum_{\alpha=1}^{\infty} \alpha \frac{B_{\alpha}}{r^{\alpha+1}}$$

$\alpha=1$ monopole-monopole (Coulomb)
 $\alpha=2$ monopole-dipole (e^- - H_2O)
 $\alpha=3$ dipole-dipole (H_2O - H_2O)
 $\alpha=4$ dipole-quadrupole
 $\alpha=6$ dipole-induced dipole
 induced dipole - induced dipole
 $\alpha \rightarrow \infty$ essentially no attraction

- Model **repulsive terms** ($F=0$ until $r \sim 0$)
 - primarily due to electron fields overlapping
 - strong electrostatic repulsion at short distance, along with Pauli exclusion principle
 - can also use power laws, high α for short distance

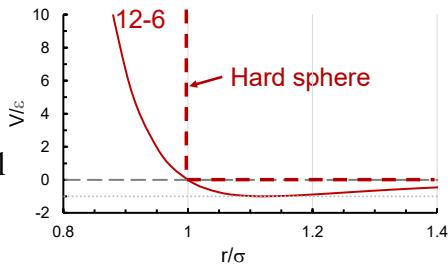
Example Intermolecular Potentials

- Lennard-Jones** potentials
 - simple two term models, can capture basic trends



LJ 12-6

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

“well-depth” ϵ σ separation distance


LJ 9-6

$$V(r) = \epsilon \left[2 \left(\frac{\sigma}{r} \right)^9 - 3 \left(\frac{\sigma}{r} \right)^6 \right]$$

Example Intermolecular Potentials

- **Rigid/Hard Sphere** model
 - also known as elastic **billiard ball** model
 - assumes no attraction and infinite repulsion potential when $r \leq r_{crit}$
 - simplest model, analytically tractable
 - can still provide useful results

