

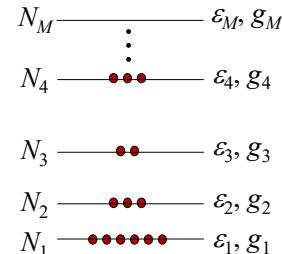
Review Macrostates

- So far we have found the number of microstates $W(N_i)$ in a *given* macrostate, e.g.,

$$W_{Boltzmann}(N_i) \approx \prod_{i=1}^M g_i^{N_i} / \prod_{i=1}^M N_i!$$

- macrostate \equiv given N_i distribution
- $N_i/N \equiv$ fraction of molecules in i^{th} energy level ($N = \text{total \# molec.}$)

- Each “**allowed**” macrostate must meet overall constraints $\sum N_i = N; \sum N_i \varepsilon_i = E$



AE/ME 6765

Most Probable Macrostate

- Recall one of our goals is to find total number of possible microstates $\Omega = \sum_{\text{allowed macrostates}} W(N_i)$
- Turns out (show later) that for N large $\ln \Omega \cong \ln W_{\max}$
- Also having no reason not too, we will postulate that *all microstates are equally probable principle of equal a priori probability* so probability of system being in given macrostate $= W/\Omega$
 - thus macrostate with W_{\max} is also the **most probable macrostate** (at equilibrium)
 - and N_i/N for the most probable macrostate will tell us the probability of finding a molecule (particle) in a given energy level (at equilibrium)

AE/ME 6765

Distribution of Microstates

- To demonstrate W_{\max} versus Ω , consider putting N particles in M large boxes, each with g little boxes
 - for this starting simple demonstration, we are **ignoring energy issues** (simplifies calculations)
- First ask, **how many “macrostates”?**
(different N_i distributions)
 - how many ways to put N things in M big boxes with no limit on N per big box
 - same question as B-E statistics
 - example: $N=6, M=3, g=24$

$$n_{Macro} = \frac{(N+M-1)!}{N!(M-1)!} = \frac{8!}{6!2!} = 28$$

$M=3$	
$N=6$	
•	
•	
•	
•	
•	
$g=24$	
1 = (6,0,0)	
2 = (5,1,0)	
3 = (4,2,0)	
4 = (3,3,0)	
5 = (2,4,0)	
6 = (1,5,0)	
7 = (0,6,0)	

$\Sigma=28$	✓

MostProbable Macrostate-3
Copyright © 2009, 2022, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Simplified Example: Comparing W

- What is W for a given “macrostate”?
 - assuming limit of one per little box (F-D stats.)
 - $W(N_i) = \prod \frac{g!}{N_i!(g-N_i)!}$
 - for our example, some cases
 - all in one i
 - nearly uniform
 - uniform

$$W_{(6,0,0)} = W_{(0,6,0)} = W_{(0,0,6)} = 1.3 \times 10^5$$

$$W_{(3,2,1)} = W_{(3,1,2)} = W_{(2,3,1)} = 1.3 \times 10^7$$

$$W_{(1,3,2)} = W_{(1,2,3)} = W_{(2,1,3)} = 2.1 \times 10^7 = W_{\max}$$

for our equal g 's (*and no energy issues*)
 ⇒ uniform distribution most probable (W_{\max})
 ⇒ nearly uniform distributions very likely

MostProbable Macrostate-4
Copyright © 2009, 2022, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Simplified Example: # Microstates

- How many total “microstates”?

– how many ways to put N things in $M \times g$ little boxes with limit of 1 per little box

– same as F-D statistics

$$\Omega = \frac{(Mg)!}{N!(Mg-N)!} = \frac{72!}{6!64!} = 1.56 \times 10^8$$

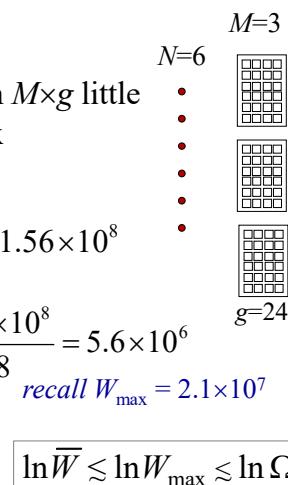
- What is mean \bar{W} ?

$$\bar{W} = \frac{\Omega}{n_{Macro}} = \frac{1.56 \times 10^8}{28} = 5.6 \times 10^6$$

recall $W_{\max} = 2.1 \times 10^7$

- Compare $\ln \Omega$, $\ln W_{\max}$ and $\ln \bar{W}$

$$\ln \bar{W} \approx 15.5; \ln W_{\max} \approx 16.9; \ln \Omega \approx 18.9$$



AE/ME 6765

What Happens for Large N

- For very large numbers, these values get closer

– e.g., $N=10^{19}$, $M=8000$, $g=1.25 \times 10^{20}$

$$\ln W_{\max} = 1.25129 \dots \times 10^{20}; \ln \Omega = 1.25129 \dots \times 10^{20} \Rightarrow \ln W_{\max} \cong \ln \Omega$$

- Physical interpretation of this example

– 1 cm³ region at SATP, $N \sim 10^{19}$

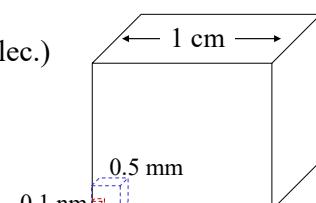
– 1 Å³ small boxes (about size of molec.)
⇒ 10^{24} possible locations (“states”)

– how many N_i in larger 0.5 mm “big boxes” ($M = 8000$)

• probability of all molecules in 1 “big” box $\sim e^{-10^{20}}$

• probability of exactly same # molec in each “big” box (most probable “macrostate”) $\sim e^{-10^{10}}$

• probability of at least 1.25×10^{15} molec in each “big” box (nearly same, uniform distribution) ~ 1



AE/ME 6765

Most Probable Energy Macrostate

- So for most macroscopic (large) systems, we can use
$$\ln W_{\max} \cong \ln \Omega$$
 - we can focus on $\ln W_{\max}$ if we want to find $\ln \Omega$
 - note: not saying $\Omega = W_{\max}$, just that \ln of these values is essentially the same
- Most probable distribution of particles over energy levels
 - contains nearly all the microstates
 - has nearly 100% probability
 - **represents the TD equilibrium particle distribution**
 - e.g., if we made a measurement of an equilibrium system, it is the distribution we would find 99.999...% of the time