

Chemical TD of Gases

- So far, we have primarily developed “general” TD relations
 - broad class of simple-compressible substances
- Now turn focus to gases
 - develop TD relations for various gas “models”
- Start with ideal gas law model
 - typically defined based on following p - v - T behavior given by $pV=nRT$
 - derivable (later) for point molecules (take up no volume) with only short range (repulsive) interactions that last a very short amount of time
⇒ valid for “low” pressure but not too low a temperature
- Then expand to more complex gas models

Perfect Gases

- Various terms commonly for this gas model
 - ideal gas (IG) ← *careful, these terms often used to indicate*
 - perfect gas (PG) ← *additional behavior, i.e., calorically perfect*
 - thermally perfect gas (TPG)
- For TD relations begin here with definitions based on chemical potential μ
 - also useful for dealing with TPG mixture and other ideal solutions
- Will see for
 - single TPG $\mu = \mu^o(T) + \bar{R}T \ln p / p^o$ ↗ reference pressure
 - TPG mixture $\mu_i = \mu_i^o(T) + \bar{R}T \ln p_i / p_i^o$ ↗ or sometimes just $\ln p / \ln p_i$
 - ideal solution $\mu_i = \mu_i^*(p, T) + \bar{R}T \ln \chi_i$ ↗ with $p^o=1$?

Single (Species) Thermally Perfect Gas

- Begin with some **definitions**
 - let μ and μ^o be chemical potentials of our gas at pressures p and p^o but at **same T** , i.e.,
$$\mu \equiv \mu(p, T) \quad \mu^o \equiv \mu(p^o, T) = \mu^o(T)$$
 - then we will **define a TPG** as a gas that follows the relationship $\mu = \mu^o(T) + \bar{R}T \ln \frac{p}{p^o}$ **μ^o standard chemical potential @ T and p^o**
 - note this requires the p dependence to be separable from the T dependence
 - typical to let $p^o = 1$ unit (e.g., 1 atm or 1 bar), so can write

$$\boxed{\mu = \mu^o(T) + \bar{R}T \ln p}$$

Single TPG: State Eqns.

- Develop using $\mu = \mu^o(T) + \bar{R}T \ln p$
 - recall $\frac{\partial \mu_i}{\partial p} \Big|_{T, \chi_j} = \hat{v}_i$ and $\frac{\partial \mu_i}{\partial T} \Big|_{p, \chi_j} = -\hat{s}_i$
 - for pure substance (single component)
$$\hat{v} = \frac{\partial \mu}{\partial p} \Big|_T = \bar{R}T \frac{1}{p} \quad \Rightarrow \boxed{p\hat{v} = \bar{R}T}$$

$$\mu = \hat{h} - T\hat{s}$$

$$\hat{h} = \mu + T\hat{s} = \mu^o - \bar{R}T \ln p - T \left(\frac{d\mu^o}{dT} + \bar{R} \ln p \right)$$

$$\boxed{\hat{h} = \mu^o - T \frac{d\mu^o}{dT}} \quad \text{for TPG, } h \text{ and } u \text{ only functions of temperature}$$

$$\hat{u} = \hat{h} - \bar{R}T$$
 - from h defn. $\hat{u} = \hat{h} - p\hat{v}$

degenerate state eqns, function of 1 TD property

Single TPG: Caloric State Eqns.

- Previously showed $d\hat{u} = \hat{c}_v dT + \frac{\partial \hat{u}}{\partial \hat{v}} d\hat{v}$ $d\hat{h} = \hat{c}_p dT + \frac{\partial \hat{h}}{\partial p} dp$
 – so $d\hat{u} = \hat{c}_v dT$ $d\hat{h} = \hat{c}_p dT$ c_p, c_v only function of T
 $du = c_v dT$ $dh = c_p dT$ (since u, h only T dependent)
- and from previous result $\hat{c}_p - \hat{c}_v = T \frac{\alpha^2 \hat{v}}{1/p} = T \frac{(1/T)^2 \hat{v}}{1/p} = \frac{p \hat{v}}{T}$
 $\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \Big|_p = \frac{1}{(n\bar{R}T/p)} \frac{\partial (n\bar{R}T/p)}{\partial T} \Big|_p = \frac{1}{T}$
 $\kappa = \frac{-1}{(n\bar{R}T/p)} \frac{\partial (n\bar{R}T/p)}{\partial p} \Big|_T = \frac{1}{p}$ $\hat{c}_p - \hat{c}_v = \bar{R}$
 $c_p - c_v = R$
- specific heats often modeled by polynomial expressions
 - Shomate eqn $c_p = a + bT + cT^2 + dT^3 + eT^{-2}$
 - NASA polynomial $c_p/R = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4$

Single TPG: Entropic State Eqn.

- From Gibbs eqn. $Td\hat{s} = d\hat{u} + pd\hat{v} = d\hat{h} - \hat{v}dp$
 – for TPG $= \hat{c}_v dT + \frac{\bar{R}T}{\hat{v}} d\hat{v} = \hat{c}_p dT - \frac{\bar{R}T}{p} dp$
 $d\hat{s} = \hat{c}_v \frac{dT}{T} + \bar{R} \frac{d\hat{v}}{\hat{v}} = \hat{c}_p \frac{dT}{T} - \bar{R} \frac{dp}{p}$
 $\hat{s}_2 - \hat{s}_1 = \int_{T_1}^{T_2} \hat{c}_v \frac{dT}{T} + \bar{R} \ln\left(\frac{\hat{v}_2}{\hat{v}_1}\right) = \int_{T_1}^{T_2} \hat{c}_p \frac{dT}{T} - \bar{R} \ln\left(\frac{p_2}{p_1}\right)$
- if c_p, c_v constant over T range of interest, denoted
calorically perfect $\Delta\hat{s}_{12} = \hat{c}_v \ln\left(\frac{T_2}{T_1}\right) + \bar{R} \ln\left(\frac{\hat{v}_2}{\hat{v}_1}\right) = \hat{c}_p \left(\frac{T_2}{T_1}\right) - \bar{R} \ln\left(\frac{p_2}{p_1}\right)$
 $e^{\Delta\hat{s}_{12}/\hat{c}_v} = \left(\frac{T_2}{T_1}\right) \left(\frac{\hat{v}_2}{\hat{v}_1}\right)^{\bar{R}/\hat{c}_v} = \left(\frac{T_2}{T_1}\right)^{\hat{c}_p/\hat{c}_v} \left(\frac{p_2}{p_1}\right)^{-\bar{R}/\hat{c}_v}$

Single TPG: Entropic State Eqn.

calorically perfect

$$e^{\Delta \delta_{12}/\hat{c}_v} = \left(\frac{T_2}{T_1} \right) \left(\frac{\hat{v}_2}{\hat{v}_1} \right)^{\gamma-1} = \left(\frac{T_2}{T_1} \right)^\gamma \left(\frac{p_2}{p_1} \right)^{1-\gamma}$$

- For **isentropic process** ($\Delta s=0$)

$$\left(\frac{T_2}{T_1} \right) = \left(\frac{\hat{v}_2}{\hat{v}_1} \right)^{1-\gamma} = \left(\frac{p_2}{p_1} \right)^{\frac{\gamma-1}{\gamma}} \quad \left(\frac{p_2}{p_1} \right) \left(\frac{\hat{v}_2}{\hat{v}_1} \right)^\gamma = 1$$

– or equivalently $p v^\gamma = \text{constant}$

- One version of general class of **polytropic processes**

$$p v^n = \text{constant}$$

$$\left(\frac{T_2}{T_1} \right) = \left(\frac{\hat{v}_2}{\hat{v}_1} \right)^{1-n} = \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}}$$

n	Process
0	Isobaric
1	Isothermal
γ	Isentropic
∞	Isochoric

Thermally Perfect Gas Mixtures

- Again begin with **definitions**
 - let μ_i and μ_i^o be chemical potentials of i^{th} component of gas, having mole fraction χ_i
 - define a TPG mixture** as one that follows relationship

$$\mu_i = \underbrace{\mu_i^o(T) + \bar{R}T \ln \frac{p}{p^o}}_{\substack{\text{independent of composition} \\ \text{composition dependence}}} + \underbrace{\bar{R}T \ln \chi_i}_{\text{simple}}$$

– as $\chi_i \rightarrow 1$ $\mu_i \rightarrow \mu_{\text{pure } i}$ decoupled

- so 1st term is same as pure TPG of i^{th} component
- if use $p^o=1$ unit (e.g., atm), and define $p_i=p\chi_i$

same as $\mu_i = \mu_i^o(T) + \bar{R}T \ln p_i$ $\Rightarrow \sum_i p_i = p$

single TPG

Thermally Perfect Gas Mixtures

$$\mu_i = \mu_i^o(T) + \bar{R}T \ln p_i$$

- Comments
 - $\mu_i = \mu_i(p_i, T) = \hat{g}_i(p_i, T)$
 - Gibb's value for pure component i evaluated at p_i, T
 - $\mu_i = \mu_i(p, T, \chi_i)$ but not function of $\chi_{j \neq i}$
 - independent of other components in mixtures*
 - this decoupling of composition dependence is property of general class of mixtures called **Mixtures of Independent Substances**
 - also includes **Ideal Solutions** (liquid and/or solid)
 - on molecular scale, this idealization requires allowed quantum states of each component to be unaffected by presence of other components (will see later in Statistical Mechanics)

TPG Mixtures: State Eqns.

- Develop using $\mu_i = \mu_i^o(T) + \bar{R}T \ln p_i$
 - similar to single TPG $\bar{v}_i = \frac{\partial \mu_i}{\partial p} \Big|_{T, \chi_j} = \frac{\bar{R}T}{p} \Rightarrow p\bar{v}_i = \bar{R}T$ *for component i*
 - each component behaves like TPG
 - molar volume same for components in mixture
 - so $V = \sum_i n_i \bar{v}_i = \bar{v}_i \sum_i n_i = \bar{v}_i n \Rightarrow \hat{v} = \frac{V}{n} = \bar{v}_i \Rightarrow p\hat{v} = \bar{R}T$ *for mixture*
 - using partial pressure definition

$$p_i = \chi_i p = \chi_i \frac{\bar{R}T}{V/n} = \frac{\chi_i n \bar{R}T}{V} \Rightarrow p_i V = n_i \bar{R}T$$
 for component i

TPG Mixtures: Caloric State Eqns.

- Recall $\mu_i = \bar{g}_i = \bar{h}_i - T\bar{s}_i = \bar{h}_i + T \frac{\partial \mu_i}{\partial T} \Big|_{p, \chi_j, \chi_i}$

$$-\frac{\mu_i}{T^2} + \frac{1}{T} \frac{\partial \mu_i}{\partial T} \Big|_{p, \chi_j, \chi_i} = -\frac{\bar{h}_i}{T^2} \Rightarrow \frac{\bar{h}_i}{T^2} = \frac{-\partial(\mu_i/T)}{\partial T} \Big|_{p, \chi_j, \chi_i}$$
- Using TPG mixture: $\mu_i = \mu_i^o + \bar{R}T \ln p + \bar{R}T \ln \chi_i$

$$\Rightarrow \frac{\partial(\mu_i/T)}{\partial T} \Big|_{p, \chi_j, \chi_i} = \frac{d}{dT} \left(\frac{\mu_i^o}{T} \right) + 0 + 0$$
- So $\frac{\bar{h}_i}{T^2} = \frac{\hat{h}_i}{T^2} \Rightarrow \bar{h}_i(T) = \hat{h}_i(T)$ fn of T only
for pure i
- Similarly $\bar{u}_i(T) = \hat{u}_i(T)$ TPG at T
- Mixture enthalpy $H(T) = \sum_i n_i \bar{h}_i(T) = \sum_i n_i \hat{h}_i(T)$ What is \hat{c}_p of mixture?
no ΔH (or ΔU) due to mixing also true for ideal solutions mixed gases unmixed red arrow

$$\hat{c}_p = \sum_i \chi_i \hat{c}_{p_i}$$

Perfect Gases-11
Copyright © 2021, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

TPG Mixture: Entropy Due to Mixing

- Now let's compare S and G of components mixed vs unmixed (at same T)
- For TPG mixture $G = \sum_i n_i \bar{g}_i = \sum_i n_i (\mu_i^o + \bar{R}T \ln p_i)$

$$- p^i \equiv p$$
 of i^{th} component before mixed $= \sum_i n_i \left(\underbrace{\mu_i^o + \bar{R}T \ln p^i}_{\mu^i} + \bar{R}T \ln \frac{p_i}{p^i} \right)$

$$- \text{so } G_{\text{after mix}} - G_{\text{before mix}} = \Delta G_{\text{mixing}} = \bar{R}T \sum_i n_i \ln \frac{p_i}{p^i}$$

$$- \text{and for } T=\text{const. } \Delta G_{\text{mixing}} = \Delta H_{\text{mixing}} - T\Delta S_{\text{mixing}}$$

$$\frac{\Delta G_{\text{mixing}}}{T} = -\Delta S_{\text{mixing}} = \bar{R} \sum_i n_i \ln \frac{p_i}{p^i}$$
 $\chi_i p$

Perfect Gases-12
Copyright © 2021, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

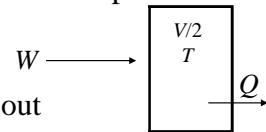
TPG Mixture: Entropy Due to Mixing

- Compare to earlier 2nd Law example of removing partition between perfect gases
- Result was $\Delta S = k(N_A + N_B) \ln 2$
 $= \bar{R} (n_A + n_B) \ln 2$

$V/2$	$V/2$
T	T
p_A	p_B

- With new expression $\frac{\Delta G_{mixing}}{T} = -\Delta S_{mixing} = \bar{R} \sum_i n_i \ln \frac{p_i}{p_i}$
- $\Delta S = -\bar{R} (n_A \ln \frac{1}{2} + n_B \ln \frac{1}{2})$ since V for each gas increases by 2,
 $= \bar{R} (n_A + n_B) \ln 2$ ✓ pressure for each decreases by 2

- How to get $\Delta S_{mixing} = 0$ for our 2 gases (isothermally)?
 - final partial pressures must be same as initial pressures
 - requires isothermal and reversible compression to $V/2$
 - thus also work in and heat transfer out



AE/ME 6765

TPG Mixture: Entropy Due to Mixing

- So we have 2 special cases $\frac{\Delta G_{mixing}}{T} = -\Delta S_{mixing} = \bar{R} \sum_i n_i \ln \frac{p_i}{p_i}$
 - all gases have same initial pressures, which also match final pressure: $p^i = p$ for all i
 - $\Delta G_{mixing} = -\Delta S_{mixing} = \bar{R} \sum_i n_i \ln \frac{p \chi_i}{p^i} = \bar{R} \sum_i n_i \ln \chi_i < 0$
 - mixing produces entropy ($S \uparrow$ and $G \downarrow$) as expected
 - initial pressure of each gas is same as its final partial pressure in the mixture: $p^i = p_i$ for each i
 - $\Delta G_{mixing} = -\Delta S_{mixing} = \bar{R} \sum_i n_i \ln \frac{p_i}{p^i} = 0$
 - in this case no entropy change associated with mixing
 - but requires $V < V^i$, so work and heat transfer

AE/ME 6765