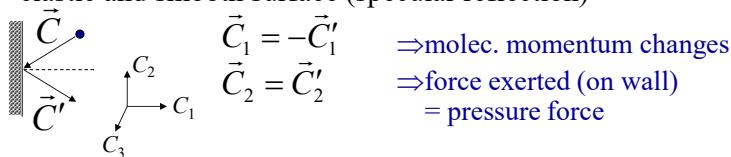


Pressure, Temperature and Energy

- Begin by using simple models to find relations between p , T and E due to random molecular (translational) motions
- Consider region filled with molecules
 - having **no average motion**
 - at **equilibrium**
 - interacting with a wall
- Start with molecule moving with (random) velocity \vec{C} colliding with wall
 - elastic and smooth surface (specular reflection)



Pressure Temperature Energy -1
 Copyright ©2009, 2020, 2025 by Jerry M. Seitzman.
 All rights reserved.

AE/ME 6765

Gas Kinetic Pressure

- So from mechanical viewpoint (Newton's Law, $F=d(mu)/dt$), pressure (normal stress) results from change of momentum of molecules (e.g., momentum transfer to wall)

$$\text{force per collision} \rightarrow \frac{F}{A} = \frac{\Delta(m\vec{C})/\Delta t}{A}$$

- To get pressure, need to consider all collisions with wall (sum forces over Δt)

$p = \text{flux of molec} \times \text{normal force per collision}$
 $\text{leftward # collisions} / \text{area} \times \text{time} = \frac{1}{2} n_{C_1} C_1 = 2mC_1$
 $p_{C_1} = mn_{C_1} C_1^2$
 $n_{C_1} = \text{concentration of molecules with (speed) } C_1 \text{ (in 1-direction)}$

Pressure Temperature Energy -2
 Copyright ©2009, 2020, 2025 by Jerry M. Seitzman.
 All rights reserved.

AE/ME 6765

Gas Kinetic Pressure

- To get total pressure, need to sum over all molecules (or all speeds)

$$p = \sum_{C_1} mn_{C_1} C_1^2 = m \sum_{C_1} n_{C_1} C_1^2$$

- Define average squared speed

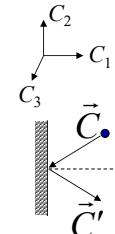
$$\overline{C_1^2} \equiv \frac{\sum_{C_1} n_{C_1} C_1^2}{\sum_{C_1} n_{C_1}} \Rightarrow p = mn \overline{C_1^2}$$

- At equilibrium, p should be same in all directions

- shouldn't depend on orientation of wall
- so should write in terms of total speed C

$$p = \frac{1}{3} mn \overline{C^2}$$

in translational equilibrium



$$\overline{C^2} \equiv \overline{C_1^2} + \overline{C_2^2} + \overline{C_3^2}$$

at equil. $\overline{C_1^2} = \overline{C_2^2} = \overline{C_3^2}$

$$\overline{C^2} = 3\overline{C_1^2}$$

AE/ME 6765

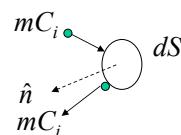
Gas Kinetic Pressure

- We defined pressure as normal force on wall
 - but we know pressure is defined whether a wall is present or not

$$\frac{p}{T} = \frac{\partial S}{\partial V} \Big|_U$$

- So we can instead interpret p as total (rightward + leftward) one-way flux of normal momentum across an arbitrary plane in space

$$p = \frac{1}{3} mn \overline{C^2}$$



AE/ME 6765

Kinetic Energy and Temperature

- Consider (random) kinetic energy of molecules
 - restricting consideration to translational motion

$$p = \frac{1}{3} nm \overline{C^2}$$

$$E_{tr} = \frac{total\ mass}{2} (Vnm) \overline{C^2}$$

$$E_{tr} = \frac{2}{3} pV \Rightarrow pV = \frac{2}{3} E_{tr}$$

N = # moles

- Compare to TPG state relation $pV = N\bar{R}T$

$$\Rightarrow E_{tr} = \frac{3}{2} N\bar{R}T$$

$k = \bar{R}/N_A$ Boltzmann's Constant

$$\frac{E_{tr}}{N} = \frac{3}{2} kT$$

on per molec. basis *on per mass basis* $e_{tr} = \frac{3}{2} RT$

Pressure Temperature Energy -5
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Kinetic Energy and Temperature

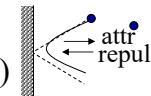
- (Translational) temperature is a measure of (kinetic) energy $T = \frac{2}{3} \frac{E_{tr}}{N\bar{R}}$
- Specific heat $de = c_v dT$
 - $\Rightarrow c_{v,tr} / R = 3/2$
 - $\Rightarrow \gamma = c_p / c_v = 5/3$ *if only translational energy mode*
 - Specific heat associated w/ random translational energy*
 - Agrees with Statistical Thermodynamics*

Pressure Temperature Energy -6
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Intermolecular Force Correction

- In previous “derivation”, we ignored molecular interactions/“collisions” effects to straight line motion before molecule hits wall (or before molecule crosses our arbitrary plane)
 - attractive force
⇒ less mom. transfer to wall (or across plane)
 - repulsive force
⇒ more momentum transfer
- Correction factor: can show $p = nkT(1 \pm \text{and } nd^3)$
 - for hard sphere
$$p = nkT \left(1 + \frac{2\pi}{3} nd^3 \right)$$
 $nd^3 \ll 1$ for TPG



Pressure Temperature Energy -7
Copyright © 2009, 2020, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Random Kinetic Energy

- Look at $\bar{C^2}$
 - from previous, random (transl.) KE = thermal energy

$$\frac{1}{2} m \bar{C^2} = \frac{3}{2} kT \Rightarrow \sqrt{\bar{C^2}} = \sqrt{\frac{3kT}{m}}$$

- speed of sound $a = \sqrt{\gamma RT} = \sqrt{\gamma \frac{k}{m} T}$

$$\frac{E_{tr}}{N} = \frac{3}{2} kT \Rightarrow \frac{\sqrt{\bar{C^2}}}{a} \sim \sqrt{\frac{3}{\gamma}} \sim O(1) \quad \text{why?}$$

- Note: E_{tr} only function of T , not mass of particle

At fixed T, how does $\bar{C^2}$ (or \bar{C}) compare for light vs. heavy particles?

Pressure Temperature Energy -8
Copyright © 2009, 2020, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765