

Reacting Mixtures: Equil. Properties

- So how to determine equilibrium properties of reacting TPG mixtures from statistical mechanics?
- Can use similar procedure as in classical TD
 - need
 - “possible” species present (defines state/ K_p expressions)
 - molecular parameters/models for each species
 - number (or ratios) of nuclei present
 - temperature
 - and one more independent TD variables (e.g., pressure)
 - then can calculate composition using partition function
 - with known composition, can then calculate mixture’s TD properties from properties of each gas component
- Let’s examine some properties for which statistical mechanics has already provided new insights: **specific heat** and **entropy**

Reacting Gas Mixture: Specific Heat

- The definition of specific heat c_p of a substance is

$$c_p = \left. \frac{\partial h}{\partial T} \right|_p$$

- For an ideal mixture, we can write

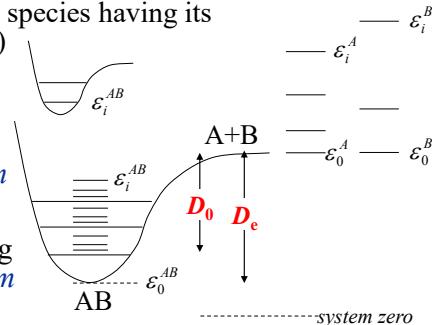
$$h = \frac{H_{mix}}{m_{mix}} = \sum_s \frac{n_s \bar{h}_s}{n_s \bar{M}_s} \quad \begin{array}{l} \text{moles of species } s \\ \text{molar mass (“molec. weight”) of species } s \end{array}$$

↑
constant

$$c_p = \frac{1}{m_{mix}} \sum_s \left[n_s \left. \frac{\partial \bar{h}_s}{\partial T} \right|_p + \bar{h}_s \left. \frac{\partial n_s}{\partial T} \right|_p \right] = \frac{1}{m_{mix}} \left[\sum_s n_s \bar{c}_{p_s} + \sum_s \bar{h}_s \left. \frac{\partial n_s}{\partial T} \right|_p \right]$$

Frozen c_p of mixture for no change in composition (“nonreacting”)

$$c_p = \frac{1}{m_{mix}/n_{tot}} \left[\sum_s \chi_s \bar{c}_{p_s} + \sum_s \bar{h}_s \left. \frac{\partial \chi_s}{\partial T} \right|_p \right]$$

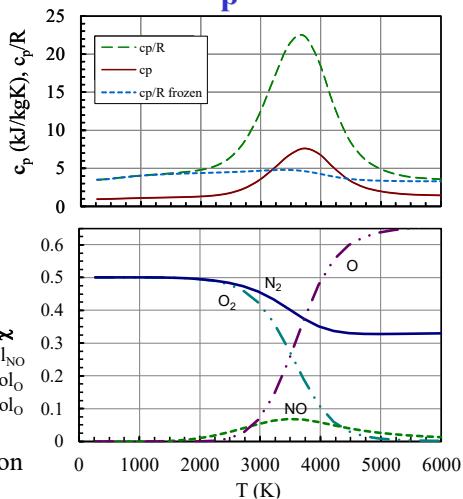

Chemical c_p contribution to c_p if composition not changing with T , $=0$

molecular weight of mixture

Reacting Perfect Gas Mixture: $c_p(T)$

$$c_p = \frac{1}{m_{mix}/n_{tot}} \left[\sum_s \chi_s \bar{c}_{p_s} + \sum_s \bar{h}_s \frac{\partial \chi_s}{\partial T} \Big|_p \right]$$

- $c_{p_s}(T)$
 - already showed how to get from $Q^s(T)$ for each species/component
 - based on each molecular species having its own zero energy (datum)
- $\chi_s(T)$
 - also function of all $Q^s(T)$, but now using **common energy zero/datum**
- $h_s(T)$
 - this term also requires using **common energy zero/datum**



AE/ME 6765

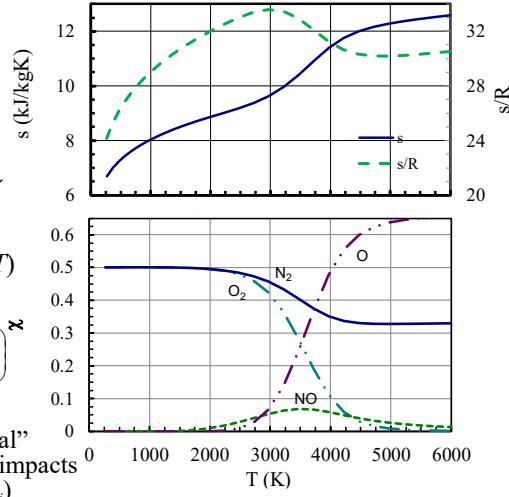
Properties of Reacting Mixtures -3
Copyright © 2021, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

Example Result: c_p

- Conditions
 - gas containing N and O nuclei with 1:1 ratio
 - species: N_2 , O_2 , NO , O
 - $p = 1 \text{ atm}$
- Specific heat, c_p
 - large rise for $\sim 2200 < T < 3500 \text{ K}$
 - large drop for $\sim 3500 < T < 5500 \text{ K}$
- Creation of O increases c_p more than NO creation
 - $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO \Delta H_R \sim 90 \text{ kJ/mol}_{NO}$
 - $\frac{1}{2}O_2 \rightarrow O \Delta H_R \sim 250 \text{ kJ/mol}_O$
 - $NO \rightarrow O + \frac{1}{2}N_2 \Delta H_R \sim 160 \text{ kJ/mol}_O$
- c_p/R dominated by chemical term while species composition changing

AE/ME 6765

Properties of Reacting Mixtures -4
Copyright © 2021, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.


Example Result: s

- Entropy, s
 - increases with T
($\sim c_p \ln T$ if c_p constant)
 - s vs T slope \uparrow as O created, but $s/R \downarrow$
- Why?**
 - O has lower c_p/R so $s/R \downarrow$
 - O $\uparrow \Rightarrow$ more moles, so $s \uparrow$
- No evidence that chemical c_p/R impacts s (for known T)
$$\frac{s^X}{R^X} = \ln Q_{com}^X + T \frac{\partial \ln Q_{com}^X}{\partial T}$$

$$= \left(\frac{-\epsilon_{off}^X}{kT} + \ln Q^X \right) + \left(\frac{\epsilon_{off}^X}{kT} + T \frac{\partial \ln Q^X}{\partial T} \right)$$

can use either partition function

$$= \ln Q^X + T \frac{\partial \ln Q^X}{\partial T}$$
 - so difference in “chemical” energies of species only impacts composition ($s_{mix} = \sum Y_i s_i$)

Properties of Reacting Mixtures -5
Copyright © 2021, 2022, 2023 by Jerry M. Seltzman
All rights reserved.

AE/ME 6765