

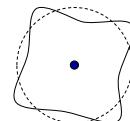
Quantum Mechanics/Wave Theory

- Rapid progress made in development of QM thanks to many
 - Heisenberg, Born, Dirac.../DeBroglie, Schrödinger,...
- Historically
 - de Broglie (PhD student!) in 1924 saw light was being described both by classic wave theory (e.g., Maxwell) and by particles (Planck-Einstein, with supporting evidence by Millikan (1916) and Compton (1923) showing $p_{photon}=h/\lambda$)
 - if photon could be described as particle and wave, why not matter particles too

$$\lambda=h/p=h/mv \quad (h=6.626 \times 10^{-34} \text{ Jsec})$$
 - so 1 g pebble moving at 1 cm/s $\Rightarrow \lambda \sim 10^{-19} \text{ nm}$ ($\lambda/D \ll 1$)

Quantum Mechanics Background -1
Copyright © 2009, 2022 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765


Electron Wavelength

- For electron in orbit, if electron is a wave, then an integral number of wavelengths must fit orbit perimeter

$$2\pi r = n\lambda = n \frac{h}{p} = n \frac{h}{m_e v_e}$$

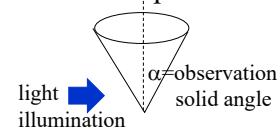
$$\Rightarrow m_e v_e r = L = n\hbar \quad \text{same as Bohr model}$$

- If matter can be described as waves, need new dynamic equations (similar to EM/optical wave theory) to treat waves
 - will lead to **Schrödinger Equation**

Quantum Mechanics Background -2
Copyright © 2009, 2022 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

A Modern Interpretation of QM


- Understanding wave/matter duality has most commonly been approached based on the concepts of probability
- Postulate based on importance of observables
 - for “large” (macroscopic) systems, we can make measurements/observations without significantly disturbing our system
 - for “small” systems, the disturbance associated with making the observation is not negligible, it impacts the system

Quantum Mechanics Background -3
Copyright © 2009, 2022 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Example of Measurement Impact

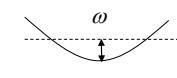
- Consider optical microscope used to observe an atomic particle
 - optical theory says resolving power of a microscope given by $\Delta x \sim \lambda / \sin\alpha$
(λ = light wavelength)
- To characterize a particle’s dynamic state need to measure, for example: x (position) **and** p (momentum)
 - to improve Δx would need to reduce λ (e.g., from visible \rightarrow uv \rightarrow x-rays)
 - BUT light (photon) involved in measurement would interact with particle, transfer some momentum to/from atom
- Uncertainty in momentum transferred due to photon being scattered into our observation solid angle

$$|\Delta p_x| = p \sin \alpha = \frac{h}{\lambda} \sin \alpha$$

Quantum Mechanics Background -4
Copyright © 2009, 2022 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Heisenberg Uncertainty Principle


- Multiplying both uncertainties to get our “least” uncertainty (best resolution) of this product $\Delta x |\Delta p_x| \approx \frac{\lambda}{\sin \alpha} \frac{h}{\lambda} \sin \alpha = h$
- Correct expression is $\Delta x |\Delta p_x| \geq h/2\pi$ **Heisenberg Uncertainty Principle**
 - can’t know position **and** momentum of particle to arbitrarily high accuracy
- Causality only applies to undisturbed systems
 - observation causes non-negligible disturbance
- With causality “broken”, we can only examine probabilities for subsequent measurements
 - wave aspect of matter connected to probability of finding a particle at some specific location

Review of Wave Equation Solutions

- Consider 1-d wave equation in space (x) and time (t)

$$\frac{\partial^2 \omega}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \omega}{\partial t^2}$$

wave displacement

propagation speed

- x and t dependence independent, so can use separation of variables (SOV)
 - assume solution of form $\omega = f(x) g(t) = f(x) e^{i2\pi\nu t}$
 - insert into wave equation
$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{u^2} (i2\pi\nu)^2 f \rightarrow f''(x) + K^2 f(x) = 0$$

wavenumber

$$K \equiv \frac{2\pi\nu}{u} = \frac{2\pi}{\lambda}$$
- standing wave eqn. (Helmholtz eqn)

Boundary Conditions: Vibrating String

- Problem not well-posed yet, need boundary conditions (BC)
 - consider string fixed at ends
 - BC are $\omega(t,0) = \omega(t,L) = 0$
 - which means $f(0) = f(L) = 0$ *so BC are periodic*
- By inspection, general solution should be of form

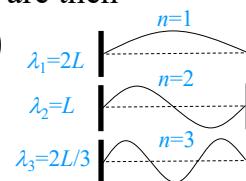
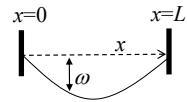
$$f = B \sin(Kx) + C \cos(Kx)$$
- Applying BC: $f(0) = 0 = C \cos(0) \Rightarrow C=0$

$$f(L) = 0 = B \sin(KL)$$
 - either $B=0$ (boring) or $\sin(KL)=0 \Rightarrow KL=n\pi$

$$f''(x) + K^2 f(x) = 0$$

so BC are periodic

$$n=0, 1, 2, \dots$$



AE/ME 6765

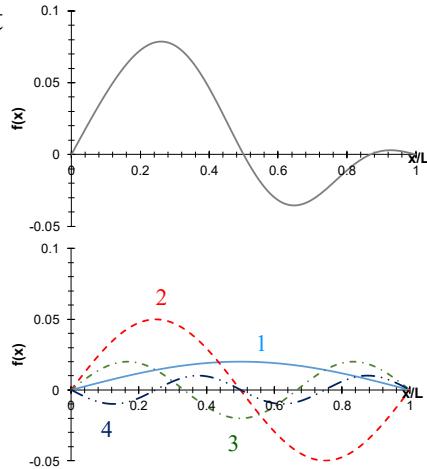
Eigenvalues and Eigenfunctions

- So BC produce requirement that $KL=n\pi$ or we can write $K_n = n\pi/L$ *n related to quantum numbers*
 - **quantized wavenumbers**
 - can also define quantized wavelengths
 - $\lambda_n = 2\pi/K_n = 2L/n$
 - K_n (or λ_n) are the **eigenvalues** of the system
- Solutions for this 1-d wave problem are then

$$f(x) = \sum_{n=0}^{\infty} B_n \sin(K_n x) = \sum_{n=0}^{\infty} B_n \sin(2\pi x/\lambda_n)$$

amplitudes *eigenfunctions*

all possible solutions are superpositions of the eigenfunctions, scaled by their amplitudes


AE/ME 6765

Superposition Example

- Any possible $f(x)$ must be superposition of eigenmodes
- Example: non-symmetric (spatially) decaying oscillation

$$f(x) = 0.02 \sin\left(\frac{2\pi x}{2L}\right) + 0.05 \sin\left(\frac{2\pi x}{L}\right)$$

$$+ 0.02 \sin\left(\frac{2\pi x}{2L/3}\right) - 0.01 \sin\left(\frac{2\pi x}{L/2}\right)$$

Quantum Mechanics Background -9
Copyright © 2009, 2022 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765