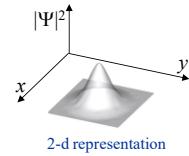


Schrödinger Equation

- Quantum Mechanics is based on replacing particle trajectories in Newtonian mechanics with a time-varying state given by the **wave function** $\Psi(\vec{x}, t)$
- Ψ interpreted as a probability amplitude for the particle being at location $\vec{x}=(x, y, z)$ at time t
 - specifically, probability of finding the particle in differential volume $dxdydz$ around \vec{x} at time t
$$= |\Psi(\vec{x}, t)|^2 dxdydz = \Psi\Psi^* dxdydz$$
- Particle must be somewhere at time t , so constraint on Ψ is

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi\Psi^* dxdydz = \int \int \int \Psi\Psi^* dV = 1$$

Laplacian Operator $\boxed{-\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{x}, t) + V(\vec{x}, t)\Psi(\vec{x}, t)} = i\hbar \frac{\partial \Psi(\vec{x}, t)}{\partial t}$ *V(\vec{x}, t) = Potential Energy from field in which particle moving*



Schrödinger Equation -1
Copyright © 2009, 2023, 2026 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Schrödinger Equation: SOV Approach

$$\boxed{-\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{x}, t) + V(\vec{x}, t)\Psi(\vec{x}, t)} = i\hbar \frac{\partial \Psi(\vec{x}, t)}{\partial t}$$

- In many situations, $V=V(\vec{x})$; field is not time-dependent
- Then can apply separation of variables (SOV), and assume a solution of the form

$$\Psi(\vec{x}, t) = \psi(\vec{x})\phi(t)$$

time-independent wave function

- insert it into Schrödinger Eqn.
- two sides of eqn. are independent LHS=fn(\vec{x}), RHS=fn(t)
- so LHS = RHS = **constant** $\equiv C$

Schrödinger Equation -2
Copyright © 2009, 2023, 2026 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Time-Independent Schrödinger Equation

- Thus we get 2 equations
- First examine time-dependence (RHS) $\frac{d\phi}{dt} = -i \frac{C}{\hbar} \phi$
 - solution of this ODE is $\phi(t) = Ae^{-i \frac{C}{\hbar} t}$
 - the parameter C/\hbar is a frequency (e.g., s^{-1} units)
 - so our wave frequency is $\omega = C/\hbar$
 - but from photon analogy for particle/wave duality $\hbar\omega = \varepsilon \Rightarrow$ our constant $C = \varepsilon$
 - turns out $A=1$ to satisfy $\int \int \int \psi \psi^* dV = 1$
- With $C=\varepsilon$ on LHS, we get

time-independent
Schrödinger Equation

$$\nabla^2 \psi + \frac{2m}{\hbar^2} (\varepsilon - V) \psi = 0$$

at any time, probability must = 1
of particle being somewhere

solving this will provide
information on quantized
energies of our molecules

AE/ME 6765