
1

Schrödinger Equation -1

School of Aerospace Engineering

Copyright  © 2009, 2023, 2025 by Jerry M. Seitzman. 

All rights reserved.

AE/ME 6765

Schrödinger Equation
• Qauntum Mechanics is based on replacing particle trajectories in 

Newtonian mechanics with a time-varying state given by the 
wave function (→x,t)

•  interpreted as a probability amplitude for 
the particle being at location 

→
x=(x,y,z) at time t

– specifically, probability of finding the particle 
in differential volume dxdydz around 

→
x at time t

• Particle must be somewhere at time t, so constraint on  is

• Also,  must satisfy Schrödinger Equation
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Schrödinger Equation: SOV Approach

• In many situations, V=V(
→
x ); field is not time-dependent

• Then can apply separation of variables (SOV), and 

assume a solution 

of the form

– insert it into 

Schrödinger Eqn.

– two sides of eqn. are independent

LHS=fn(
→
x), RHS=fn(t)

• so LHS = RHS = constant  C 
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Time-Independent Schrödinger Equation
• Thus we get 2 equations

• First examine time-dependence (RHS)

– solution of this ODE is

– the parameter C/ħ is a frequency (e.g., s-1 units)

• so our wave frequency is  = C/ħ

• but from photon analogy for particle/wave duality

ħ =    our constant C = 

– turns out A=1 to satisfy

• With C= on LHS, we get
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at any time, probability must =1 
of particle being somewhere
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Schrödinger Equation

solving this will provide 
information on quantized 
energies of our molelcules
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