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Schrödinger Equation Review

• Dynamic equation that governs the evolution of the 
QM wave function 

• SOV

• Time-dependent solution

• Time-independent Schrödinger equation
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Free Particle
• Begin by looking at simple moving 

particle moving through free space 
without any forces on it

– no forces means V=0

– Schrödinger eqn. becomes

– try SOV to get solution in form (x,y,z) = X(x)Y(y)Z(z)

– each term must be a constant, let  = x + y + z
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Free Particle (con’t)

• Break into 3 independent equations (wave eqn in each coord.)

• Solutions 

• Classical mechanics for free particle gives x=mv2
x/2

– and de Broglie wavelength   = h/px = h/mvx

• Combining 

• Since |X(x)|2 represents probability of finding the particle at x, 
the position of our particle can’t be localized
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Particle in a Box
• To localize the particle, let’s confine it

to a small bit of space, a “box”

• Same Schrödinger eqn (no potential)
– so still have

– so also same general solution as free particle

– but by requiring particle to be somewhat localized 
(in box), must be zero outside box 

• B.C.

– this looks like the bounded string (f +K2f =0), 
but with
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Particle in a Box: Energies
• Solution of ODE’s

• Apply B.C.

• Periodic B.C. thus give eigenvalues
KiLi = ni ni=1,2,3,…

• State energies and spacings

– x,1 = 1 (h2/8mL2
x)

– x,2 = 22 (h2/8mL2
x) = 4x,1

– x,3 = 32 (h2/8mL2
x) = 9x,1

0iA

2

22

,
8 i

i
ni

L

n

m

h
i


    etc.;sincos xKBxKAX xxxx 

      0sinsinsin  zzyyxx LKLKLK


2

2 2


i

i

m
K



z

x Lx

Lz

Ly

 















2

2

2

2

2

22

8
,,and

z

z

y

y

x

x
zyxtot

L

n

L

n

L

n

m

h
nnn

energies of states (and velocities) now 
quantized!!

energy spacing 
between states 

increases with ni
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larger Li means 
smaller energy 

spacing between 
states

for ni=0, particle not in the 
box (=0 everywhere)
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Particle in a Box: Degeneracy

• If LxLyLz, each specific quantum state (nx,ny,nz) 
has different energy  nondegenerate states

• Otherwise get multiple states with same energies 
 degenerate states

– e.g., Lx=Ly  (2,1,nz) has same  as (1,2,nz)

– can also happen if  Li/Lj = integer

• Number states with same energy g, degeneracy of energy level 
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• Time-independent solution

• So time-averaged probability of finding 
particle at (x,y,z) (x+dx,y+dy,z+dz) 

• For given energy (or
velocity)

– particle can’t exist at 
certain locations

Particle in a Box: Wave Functions
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D. Giancoli, Physics for scientists and 

engineers with modern physics. 4th ed. 

(2008)
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Molecular Vibrations
• In addition to translation, multi-atom molecules can 

also exhibit relative motions of their nuclei about 
the molecule’s center-of-mass

• One such motion: vibrations

• Linear vibrator with 
“spring”-like potential

• Bending of linear molecule

• Nonlinear molec. vibrations bending
(e.g., elastic beam)
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Harmonic Oscillator (1-D)

• Simplest vibration model is 1-D harmonic oscillator

– like having spring constant that doesn’t change

– describes motion in center-of-mass coordinates

– classically, energy moves between KE and PE
• equilibrium point (x=0); can be stationary,

no KE or PE

• Schrödinger Eq.

• V=?

– related to force                       dV/dx = F

– from classical mechanics for        F = kx V = ½ kx2

k=const. spring attached to mass m

• relate to frequency, 
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HO (1-D): Solutions
• Schrodinger Eqn. for HO

• B.C. and constraint

• Let 

• Solution can be found by a transformation into Hermite’s ODE

• Result

– eigenvalues

– quantum numbers

– eigenfunctions
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HO (1-D): Energy
• Discrete energy states are equally spaced

– v=h (v + ½)  v+1  v  v = h

• All states have same vibrational frequency, 
– but max/min separation increases with energy v

• Lowest energy state (v=0) is vibrating

– can’t be at rest like classical HO
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• For lowest energy state (v=0) most 
likely to find particle at x=0
– in contrast to classical HO where 

particle always spends most of its 
time at turning points (edges)

• For other states, nuclei never exists 
at some locations

• For high v, QM 
results do (on 
average) approach 
classical results
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G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I, 1989.
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Molecular Rotations

• In addition to translation and vibrations, multi-atom 
molecules can also rotate about their center-of-mass

• Linear molecules

– 2 orthogonal axes of rotation

• Nonlinear molecules

– 3 orthogonal axes of rotation
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https://commons.wikimedia.org/wiki/File:Water

_molecule_rotation_animation_large.gif

rotation 
about 
1 axis H2O 
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• Look at planar rotation of particles

along line with rigid spacing

– assume V=0 (KE only)

• Could write 2 Schrödinger eqs. (one for each 
particle) but better to use CM coordinates

• SOV

• Get 
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• So for this rigid rotor with rotation, we

can divide motion into translational and

rotational modes and tot= tr + rot

• tr and rot

– from previous solutions

• However, this solution was for a rotor confined to 

rotate only in a fixed plane (parallel to y-z plane)
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• For more general case, can write Schrödinger Eqn.
in polar coordinates with CM translation removed 

• SOV (polar coord.)

– each term must be same, equal to a constant (m2)

• Solutions

– 
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•  solution

– eigenfunctions

– eigenvalues

• So for 3-D rigid rotor

– each energy level has discrete 
energy J  J(J+1)/I

• J=rotational (ang. mom.) quantum #
• for large J, J  J 2 like the planar rotor

– there are 2J+1=gJ different states with
same energy, m= J,J+1,…, J

• m=magnetic quantum #
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Electronic Energy

• Recall H atom

– looks like a rotor of 2 particles
(nucleus and electron)

– but not rigid (r can change)

– and there is a (electrostatic) potential V(r) between 
particles  electronic energy

• QM analysis

– separate KE from electronic energy

– use SOV, work in polar coordinates

• 3 quantum numbers (n, l, m)
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mom., like J

PLUS need 
electron spin, 
ms=1/2

m=0, 1, 2,…
l=|m|,|m|+1, …

n=l+1, l+2,…

m=-l,-l+1,...,l

l=n-1, n-2, …,0
n=1,2,3…


