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Schrodinger Equation Review
* Dynamic equation that governs the evolution of the
QM wave function ¥
2 —
(s (5 (5 ) = in D)
2m ot

« SOV > .
P(x,0)=w () = l{_h Vi + Vy/} _hdg _ const=¢&
w| 2m ¢ dt

* Time-dependent solution

#e)=c "

* Time-independent Schrodinger equation

sz/+il—m(g—V)y/=0

2
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Free Particle

* Begin by looking at simple moving T v,
particle moving through free space e
without any forces on it ‘—;

— no forces means V=0

Vs

— Schrédinger eqn. becomes Vi + 22125 w=0
— try SOV to get solution in form y(x,y,z)=X(x)Y(y)Z(z)
2 2 2 .
vz 98X xz Y gy L _Z2me

2

dx dy dz n’
1d°X 1d°Y 1d°Z —2me
Y o2ty et T T T
X dx Ydy Z dz n
— each term must be a constant, let £= g+ &,+ ¢

XYZ

Z
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Free Particle (con’t)
id2X+ld2Y 1d’Z _—2m
X d Y ady Z d’ h?
* Break into 3 independent equations (wave eqn in each coord.)
d)z( 2m28XX 0: dIZ/ Zm«%‘yY 0: d? 2mgzZ 0
dx h dy n’ dz n’

. 12
Solutions [2;}:@) (cox,): ete

2

(Sx +8y +SZ)

« Classical mechanics for free particle gives g=mv?/2
— and de Broglie wavelength A = h/p,. = himv, X(x)

extends to oo

.. 2z
* Combining X occos T(X ~x,) PN
q1—> X
* Since [X(x)|? represents probability of finding the particle at x,
the position of our particle can’t be localized
but according to Heisenberg, we could know its velocity very accurately
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Partlcle in a Box

* To localize the particle, let’s confine it L:
to a small bit of space, a “box” . (]
« Same Schrédinger eqn (no potential) ¢ | 7
— so still have Vy/+22 w=0 XL,

— so also same general solution as free particle
w(ey,2)= X (0)2(z)  d’X  2me,
E=¢g,+é&, +é, dx? K’
— but by requiring particle to be somewhat localized
(in box), y must be zero outside box
«B.C. Xx(0)=x(L,)=1(0)=¥(,)=2(0)=2(L.)=0
— this looks like the bounded string (f"+K?f=0),
but with ,  2me,
K==

X =0, etc.
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Particle in a Box: Energies
* Solution of ODE’s L
X =4, cos(K x)+ B, sin(K x); etc. L .
* Apply B.C. 2 |7

A4 =0 sin(KxLx )= sin(KyLy)Z sin(K.L.)=0 x

. . . . Lx
* Periodic B.C. thus give eigenvalues for 0 particle not in the
_ _ ox (y=0 everywhere
:>KiLi = nm ni_l 9273)' .. energies of states (and velocities) now
Ime. 2 2 quantized!! 2( 2 2 2
K} = mf’ = e R ande,, (n,,n ,n, _ n—; n—; n;
h Y 8m L - Sm\ L2 L L

n,.=3  energy spacing

. . &,
» State energies and spacings™
between states

— &= 1 (h2/8mL2x) increases with n;
— "2 (1.2 2\
T 92T 22 (h /8mL2x) - 48x,1 n,=2 larger L, means
—£;3= 32 (h2/8mL x) = 98x ! sma.ller energy
’ > nle spacing between
states
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Particle in a Box: Degeneracy
g(nx,nv,n:)=&n(2+é+2] L
 If L#L#L, each specific quantum state (n,,1,,1,) o

has different energy = nondegenerate states . 1Ly

» Otherwise get multiple states with same energies
= degenerate states YL
- eg,L=L = (2,1,n,)has same gas (1,2,n,)
— can also happen if L/L;= integer
* Number states with same energy =g, degeneracy of energy level

********** =3 Q22—
2,2,1)— 0

,,,,,,,,,, =3 2D—012
. =3 é}f%_ﬁmﬁ ——@.LD(121) g=2
7777777777 . z T (12,) ——(1172) =1

n=2 0= (1,1.2) (1,1,2) g
(e n=2 — .1y — (LD &1
7777777777 n=1
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Particle in a Box: Wave Functions

» Time-independent solution L
w(x,y.2)=X(x)Y(v)z(z) . @
« So time-averaged probability of finding * | /
particle at (x,y,z) —>(x+c{x,y+dy,z+dz)2 L
=y dxdydz = {BMY sin( nz” xﬂ {BM) sin(nzﬂ yﬂ {Bm sin[ nLZ” zﬂ dxdydz
[y dxdyaz=1 AAA A Nu=10
= Bi,n, = Z/Li ~
* For given energy (or IM | XIZ[

X ]
velocity) [N M -
— particle can’t exist at K-_-\-’ wm

certain locations x20 eI, x=0 x=L,
Schvodinger Eq Soktons7 D. Gi li, Physics f ientist: d
et enginoers with modorn prysics. 4 o0 AE/MF 6708
engine
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Molecular Vibrations

* In addition to translation, multi-atom molecules can
also exhibit relative motions of their nuclei about
the molecule’s center-of-mass  diatomic example

m

. . . 2
« One such motion: vibrations ‘g ¥
* Linear vibrator with === reduced mass
(14 : 29 : :
spring”’-like potential »‘ __mmy
pring p FC ;ﬂ@ .
* Bending of linear moleculeI - 9
1 1 1 bending
* Nonlinear molec. vibrations (O g )
H H H H H H
https://dornshuld.chemistry. .
msstate.edubooks/icc/intro.  Bending Symmetric stretch  Asymmetric stretch

html

Schvodinger Eq Soluions-8 A ”MI 676 5
Copyright ©2009, 20222025 by Jerry M. Seiizman
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Harmonlc Oscillator (1-D)

. . . . . . diatomic exampl
* Simplest vibration model is 1-D harmonic oscillator mmm,’c_imm” ¢
— like having spring constant that doesn’t change F*Vﬁ@
— describes motion in center-of-mass coordinates oM X

— classically, energy moves between KE and PE ="
* equilibrium point (x=0); can be stationary,
no KE or PE

* Schrodinger Eq. vy + i—’?(s V=0
o V=2

m;+m,

— related to force dVidx=-F e=PE+KE
— from classical mechanics for F=—kx .. V="Ykx?
k=const. spring attached to mass m in center-of-mass system
* relate to frequency, v LS v= 1k V=211 x2
’ 27 \'m 27\ 1 HYV'X
= V=2n mv2 ? Jor diatomic ri’i’;;e);c‘mtclearspacing
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c HOWQ("QI-D): Solutions

. Schrodlnger Eqn. for HO

-
& W+h—<g 27 ,uv2x2>// 0 Fﬁ‘w@

dx’ ., cM
* B.C.and constraint  w—> 0 asx—> oo LO vy dx=1
2¢e .
e Let p=2m £ d’y [—p jwzo ie.,y”+ (a—x?)y=0
h dp> \hv

* Solution can be found by a transformation into Hermite’s ODE
* Result

— eigenvalues & =hv(v+l/2)

— quantum numbers v=0,1,2, ...

12 12
— eigenfunctions v, = 2uv 1 e H.(p)
h 2'v!
Hermite Polynomial (p)=(-1)e” d’ (epr) Hy=LH, =2p;H,=4p* 2
of order v v dp* H,=8p°-12p
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HO (1-D): Energy
» Discrete energy states are equally spaced
&=hv(v+ )= &, -8 =Ag =hv
 All states have same vibrational frequency, v
— but max/min separation increases with energy ¢,
» Lowest energy state (v=0) is vibrating

— can’t be at rest like classical HO et Classical
1_‘_'
for diatomic example 2 \ ; V(x) = kx?/2
5 i
4 !
3 _‘_:‘_’_ M
2 Ag 1 2
W A
7
\ librium I ) V=0 T N7 .. x
r, = equilibrium mternuclear
CM separation for classical HO 0
_Georgia|
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HO (1-D): Wave Functlons

 For lowest energy state (v=0) most “
hkely to find particle at x=0
— in contrast to classical HO where
particle always spends most of its
time at turning points (edges)
* For other states, nuclei never exists
at some locations
* For high v, QM
results do (on
average) approach
classical results

Classical HO
s v=10

3 Spatlal
2 wave
1 function

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I, 1989. ~ Classical limits
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Molecular Rotations

* In addition to translation and vibrations, multi-atom
molecules can also rotate about their center-of-mass

* Linear molecules z
— 2 orthogonal axes of rotation
CcM
) y
* Nonlinear molecules ,
— 3 orthogonal axes of rotation
3z
rotation
about Y
1 axis *
https://commons.wikimedia.org/wiki/File:Water
_molecule_rotation_animation_large.gif
S AE/ME 6765
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* Look at planar rotation of particles mEC:M,
along line with rigid spacing : \r“‘*
— assume V=0 (KE only) D
* Could write 2 Schrodinger egs. (one for each \
particle) but better to use CM coordinates
v (ml’u -: 2mz) G;th . 2(m, +m,)e
v, = (x, ¥, z)<l)(r, (p) Eit = Epcrt T Eror

tot l// — 0

2 h 2 tot

« SOV
* QGet

meIg” already solved = translational _, 2me,
VIF+ =52 F =0 motion of “total” particle Vit 72 v, =0

d’® 2ue,, ®=0 looks like 1-D translating d’X  2me,

a2t icle wi o T A0
r d¢) 7 particle with m—p, x—>r¢ x h

B AE/ME 6765
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| Rigi& Rotor (Linear) z 7

M

. o . . . 1/ N \‘
* So for this rigid rotor with rotation, we  @— .-
V1 : : . R \ 7y 'y
can divide motion into translational and % "™
. \ S
. B o\
rotational modes and ¢ = ¢, + &, = X7

\
e g and g )_
tr Tot y

h2 I’li2 X

— from previous solutions ¢,

8m L
large I means smaller h? n; hzn; r=rtry
spacing between energy &, = =
of each QM state 2ur 2[+— moment (;;“
inertia, £
n,=0,1,2,3,.. 2

* However, this solution was for a rotor confined to
rotate only in a fixed plane (parallel to y-z plane)

AE/ME 6765
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3-D°spa(wii@near) Rigid Rotor

* For more general case, can write Schrodinger Eqn.

in polar coordinates with CM translation removed ¥

2 2
%g P2 5 .12 61/;4_ 21. 62 sinﬁa—l// +2’u§’°’l//:0
r- or 0 resin“ @ op° r°sinf Op 00 n

0, rigid
+ SOV (polar coord.) w(6,9)=®(p)0(0)
2 .
1090, Smgd(smd@} 2o Ginro=0
®op’ O do

deo :

— each term must be same, equal to a constant (=—m?)

¢ Solutions 1
_ (O =——¢" —0+1 42 + to satisfy periodicity BC
o ?) 77" m=0k1£2,43, [0 gl

for J‘OZ” od'dp=1____1
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3-D (im;ingnear) Rigid Rotor

* O solution

— eigenfunctions 12
2J +1\J —|m|)! m g
. ®J,m(9):|: > (J+m)!} PJ‘ ‘(cosH) x
— eigenvalues . Associated Legendre

h? Functions

g, =J(J+1)—| J=012,..
2 m|<J  m=0zx1+2,.+J

* So for 3-D rigid rotor

— each energy level has discrete ang. mom. |
energy &; oc J(J+1)/1 internuclear axis »
* J=rotational (ang. mom.) quantum #
« for large J, ¢,c J 2 like the planar rotor
| — there are 2J+1=g, different states with
same energy, m=—J,—J+1,...,J ‘ v

_ precessing

37
2 5

1 3
J=0g/~1
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* m=magnetic quantum #
1 each quantized m state has different J angle wrt
arbitrary direction; will have different ¢ in mag. field
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Electronic Energy

S e —
 Recall H atom r&
— looks like a rotor of 2 particles ; |
(nucleus and electron)
— but not rigid (» can change)
— and there is a (electrostatic) potential V(») between
particles = electronic energy
* QM analysis 3, 0
— separate KE from electronic energy m=-1-1+1,...,]
— use SOV, work in polar coordinates m=0, +1,+2,...

PLUS need ,/,(,,’ 0, (p) =R, (,,)@lm (g)q)m (¢) nljzn+1|i|,n;‘++21, -

electron spin,
m—=+1/2 P 3 quantum numbers (n, I, m) , ,
s azimuthal or orbital ang.

. . t 4
radial or principal magnetic mom., like J
- AE/MF 6765




