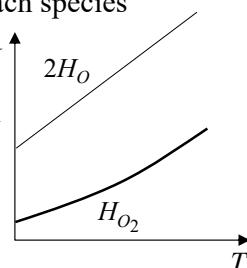


Standard Reference States

- As we have seen, most TD calculations involve changes in state properties, e.g.,
 - $\Delta U = Q + W$
 - $\dot{m} \Delta h = \dot{Q} + \dot{W}$
 - $\ln K_p = -\Delta G^\circ / \bar{R} T$
- Helpful, however, to define reference condition/state for properties
 - e.g., tables often provide $h_T - h_{T_{ref}}$
 - common choice $T_{ref} = 298.15 \text{ K}$


T	$\hat{h} (\text{kJ/mol})$						
	Reference state: Gas, $P_{ref} = 1 \text{ atm}$, $T_{ref} = 25^\circ\text{C}$						
	Air	O_2	N_2	H_2	CO	CO_2	H_2O
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01

Standard Ref States - 1
Copyright © 2021, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Standard Reference States

- Defining a reference state even more useful for reacting systems (composition change allowed)
 - need to account for differences in chemical bonds between atoms (or the “chemical energy”) for each species
 - for example, at a fixed T we must input energy to convert 1 mole of O_2 to 2 moles of O atoms
 - so at a given T , they have different H
- So we will define standard reference states for species in terms of
 - enthalpy h_i : **enthalpy of formation**
 - entropy s_i ; **3rd Law**
 - together that also creates a reference for other properties, e.g., **standard reference for g_i** = $h_i - T s_i$

Standard Ref States - 2
Copyright © 2021, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Standardized Enthalpy

- Approach

- create set of chemical species from which all other species can be formed, denoted the **reference elements**
- define a **reference temperature** (T_{ref}) and **standard pressure** (typically 1 atm or 1 bar, and denoted by o)
- set the enthalpy of all reference elements to be zero at the reference condition
 - essentially defining the “chemical energy” of each reference element to be zero
- Then enthalpy of a chemical species i at any temperature T and the standard pressure becomes

$$(H_T^o)_i = \underbrace{(\Delta H_{f,T_{ref}}^o)_i}_{\text{Chemical Energy}} + \underbrace{(H_T^o - H_{T_{ref}}^o)_i}_{\text{Sensible Enthalpy}} = \text{Standard Heat of Formation or Formation Enthalpy}$$

Standard Ref States - 3
Copyright © 2021, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Standardized Enthalpy

- Interpretation of each term

$$(H_T^o)_i = \underbrace{(\Delta H_{f,T_{ref}}^o)_i}_{\text{Chemical Energy}} + \underbrace{(H_T^o - H_{T_{ref}}^o)_i}_{\text{Sensible Enthalpy}}$$

amount of energy required to form species i from the reference elements at the standard pressure and reference temperature

amount of energy required to change temperature of species i from the T_{ref} to T at the standard pressure

$$\text{Sensible Enthalpy} = \int_{T_{ref}}^T (C_p^o)_i dT$$

- For thermally perfect gas
 - formation enthalpy and sensible enthalpy are not functions of pressure
- $\Delta H_{f,T_{ref}}^o$ typically given on a per mole or per mass basis

$$(\Delta \bar{h}_{f,T_{ref}}^o)_i \quad (\Delta h_{f,T_{ref}}^o)_i$$

Standard Ref States - 4
Copyright © 2021, 2023 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Reference Elements

- Two common choices for elements
 - the (neutral) atoms NASA Tables
 - easy to write expression to create any molecule (or ion) from its atom(s)
- the most common form of a single type of nuclei at STP **JANNAF**
*most common,
we will use it*
 - i.e., H_2 , O_2 , N_2 , Ar , $C(s)_{\text{graphite}}$, ...
 - convenient because these species often major constituents in the composition

Standard G – 3rd Law of TD

- What is a good zero datum (reference) for G ?
 - $G = H - TS$, and already established datum for T (absolute T scale) and for H (standardized enthalpy)
- So real question is **what is a good datum for S ?**
 - statistical mechanics (see later) suggests an absolute value for S should exist
- **3rd Law of TD**
 - the entropy of any pure substance in TD equilibrium approaches zero as temperature approaches zero $\lim_{T \rightarrow 0} S = 0$
 - also supported by experimental observations of Nernst (~1906) that for low T , $\Delta U \rightarrow \Delta F (= U - TS)$
- So we can create a standard Gibbs Free Energy (G_f°), and standard G of formation (ΔG_f°) *usually tabulated on per mole or per mass basis*

Formation Reactions

- Chemical state expressions where 1 mole of species of interest is “formed” (appears on the right-hand-side) from its elements (appear on the left-hand-side)
 - both elements and formed species are at T and standard pressure (p^o)
 - Examples **LHS** **RHS** $H_{T,RHS}^o - H_{T,LHS}^o$ $G_{T,RHS}^o - G_{T,LHS}^o$
 - form H_2O : $\text{H}_2 + \frac{1}{2}\text{O}_2 \leftrightarrow \text{H}_2\text{O}$ $(\Delta\bar{h}_{f,T}^o)_{\text{H}_2\text{O}}$ $(\Delta\bar{g}_{f,T}^o)_{\text{H}_2\text{O}}$
 - form NO_2 : $\frac{1}{2}\text{H}_2 + \text{O}_2 \leftrightarrow \text{NO}_2$ $(\Delta\bar{h}_{f,T}^o)_{\text{NO}_2}$ $(\Delta\bar{g}_{f,T}^o)_{\text{NO}_2}$
 - form O_2 : $\text{O}_2 \leftrightarrow \text{O}_2$ $(\Delta\bar{h}_{f,T}^o)_{\text{O}_2}$ $(\Delta\bar{g}_{f,T}^o)_{\text{O}_2}$
- so formation enthalpy and formation Gibbs are zero for elements*

AE/ME 6765

Equilibrium Constants, K_p

- In this section, will show how to determine any K_p value from standard G of formation data
 - Example: $4\text{NH}_3 + 5\text{O}_2 \leftrightarrow 4\text{NO} + 6\text{H}_2\text{O}$ (1)
 - could write this single chemical relationship as system of equations that form each species from its elements
 - $4\text{NH}_3 \leftrightarrow 2\text{N}_2 + 6\text{H}_2$ (2)
 - $2\text{N}_2 + 2\text{O}_2 \leftrightarrow 4\text{NO}$ (3)
 - $6\text{H}_2 + 3\text{O}_2 \leftrightarrow 6\text{H}_2\text{O}$ (4) $(2) + (3) + (4) = (1)$
 - so $\Delta G_2^o = -4\bar{g}_{\text{NH}_3}^o + 2\bar{g}_{\text{N}_2}^o + 6\bar{g}_{\text{H}_2}^o = -4\Delta\bar{g}_{f,\text{NH}_3}^o$ What happened to O_2 ? $\Delta\bar{g}_{f,\text{O}_2}^o = 0$
 - $\Delta G_3^o = -2\bar{g}_{\text{N}_2}^o - 2\bar{g}_{\text{O}_2}^o + 4\bar{g}_{\text{NO}}^o = 4\Delta\bar{g}_{f,\text{NO}}^o$
 - $\Delta G_4^o = -6\bar{g}_{\text{H}_2}^o - 3\bar{g}_{\text{O}_2}^o + 6\bar{g}_{\text{H}_2\text{O}}^o = 6\Delta\bar{g}_{f,\text{H}_2\text{O}}^o$
 - $\Delta G_1^o = \Delta G_2^o + \Delta G_3^o + \Delta G_4^o = -4\bar{g}_{\text{NH}_3}^o + 4\bar{g}_{\text{NO}}^o + 6\bar{g}_{\text{H}_2\text{O}}^o$
- same form holds true for ΔH_1^o*

AE/ME 6765

K_p using Formation Values

- Previously we showed for a given chemical state equation (“reaction”)

$$K_p(T) = e^{-\Delta G_T^o / \bar{R}T} \quad \Delta G_T^o \equiv \sum_i v_i \mu_i^o$$

- Using formation values

$$K_p(T) = e^{-\Delta G_f^o / \bar{R}T} \quad \Delta G_f^o \equiv \sum_i v_i \Delta \bar{g}_{f_i}^o$$

- if we have data (e.g., table) of $\Delta \bar{g}_{f_i}^o$ for each substance at desired T , then can calculate K_p for any arbitrary “reaction”
 - such a listing in the **JANNAF tables**

- For each formation reaction, can also write a K_p

$$K_{p_{f,i}}(T) = e^{-\Delta \bar{g}_{f_i}^o / \bar{R}T} \quad \text{Equilibrium Constant of Formation}$$

- so for any arbitrary (overall) “reaction” (recall $K_p = \prod_j K_{p_j}$)

$$K_p(T) = \prod_i (K_{p_{f,i}})^{v_i}$$