

(Equilibrium) Statistical Mechanics

- **What statistical mechanics provides**
 1. calculation/prediction of equilibrium thermodynamic (macroscopic) properties from molecular/microscopic properties
 - examples
 - specific heats: c_p, c_v
 - compressibility coefficients: α, β, κ
 - 2. insights into entropy, meaning of temperature
- **Overall strategy**
 - use QM to describe microscopic properties of system of interest
 - invoke statistical connection between microscopic and macroscopic properties (through entropy)
- An extension, *nonequilibrium statistical mechanics*, provides information on how systems evolve between equilibrium states
 - not a subject of this presentation

Statistical Mechanics Approaches

- Two approaches to use statistical mechanics for calculating macroscopic thermodynamic properties from microscopic properties
- **Ensemble (Gibbs) method** *more powerful method, but more abstract*
 - most general approach
 - works for non-ideal (real) and ideal systems
 - ideal = independent “particles” (atoms/molecules, electrons, photons, ...); no interactions between particles
- **Maxwell-Boltzmann method** *easier to interpret (learning ✓) and useful for ideal gases*
 - original formulation
 - assumes isolated system of independent particles
 - works for ideal gases, electron gases, crystal solids, radiation
- Both assume large number of microscopic components, so that statistical/probabilistic methods apply

Ensemble (Gibbs) Method

- For completeness, begin by briefly introducing Gibbs method
- **What is an ensemble?**
 - theoretical collection of large number of systems, each replicates macroscopic TD system of interest; entire ensemble is isolated
- For example, consider a system of N particles, with a total energy E and volume V (named the **microcanonical ensemble**)
 - very large number (nearly infinite) of combinations of the $3N$ positions and $3N$ momenta satisfy the (N, E, V) requirement
 - each combination is one element of the ensemble
 - time-averaged TD equilibrium properties based on ensemble-averaged properties
- Two other general ensembles
 - **canonical ensemble**: closed isothermal system (known N, V, T)
 - **grand canonical ensemble**: open isothermal sys. (known μ, V, T)
chemical potential \uparrow

Enumeration of Microstates-3
Copyright © 2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

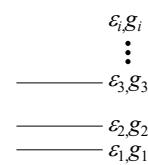
AE/ME 6765

Maxwell-Boltzmann Method Outline

- Developed for isolated macroscopic system with specified (N, E, V) of **independent** particles
 - essentially *microcanonical ensemble* of independent particles

1. Need to describe microscopic systems

- *each particle* has well-defined, possible **quantum states**
 - independent because allowed quantum states not impacted by molecular interactions
 - quantum states with same energy can be grouped into **energy levels** (ε_i) with **degeneracies** (g_i)
 - total energy is sum of energies of particles



Enumeration of Microstates-4
Copyright © 2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

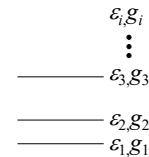
Maxwell-Boltzmann Method Outline

2. Use probability and statistics

- determine number of different ways to distribute N particles over energy levels (ε_i) while maintaining same overall energy E (for given V)
- each distribution with unique combination of quantum numbers for each particle is known as a **microstate**
- all microstates that have same number of particles in each energy level are said to be part of the same **macrostate**

3. Macroscopic TD properties

- determine which macrostate is most likely
- relate this macrostate to macroscopic TD properties through entropy



Enumeration of Microstates-5
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

M-B: Enumeration of Microstates

- Let's look at simplified example to understand microstates
 - macroscopic system with $N=4$ *indistinguishable* particles and with total energy $E=8$
 - microscopic system with 4 quantum states having energies
 - $\varepsilon_1=0, \varepsilon_2=2, \varepsilon_3=2, \varepsilon_4=4$
 - some different *unique* ways we can distribute our 4 particles among these energy quantum states

E=8
Same as microstate 1 if indistinguishable particles

	$\varepsilon_1=0$	$\varepsilon_2=2$	$\varepsilon_3=2$	$\varepsilon_4=4$	
1	•	•	•	•	
2	••			••	
3	•	••		•	
4	•		••	•	
5		••	••		
6		•••	•		
7		•	•••		
8		••••			
9			••••		
10	•••			•	
11	•	•	•	•	

Enumeration of Microstates-6
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Enumeration of Microstates

- Could also divide the 4 quantum states into 3 energy levels, with one having degeneracy of 2
- So each microstate is a unique quantum configuration (state) of the system, but has same TD/ macroscopic constraints (E, V, N here)
 - **define Ω** = total number of microstates with required macroscopic properties
- Want to find Ω
 - will later relate to S
 - use indistinguishable particles

$\varepsilon_1=0$	$\varepsilon_2=2$	$\varepsilon_3=2$	$\varepsilon_4=4$
•	•	•	•

$\varepsilon_1=0$	$\varepsilon_2=2$	$\varepsilon_3=4$
•	•	•

$$\Omega = \sum_{\substack{\text{microstates with} \\ \sum N_i = N \\ \sum N_i \varepsilon_i = E}} 1$$

*constraints
for MB
approach*

AE/ME 6765

Particle Statistics

- Approach to finding Ω
 - consider indistinguishable particles (**balls**)
 - each must exist in some energy level (**big box**)
 - each energy level can have degeneracy (**little boxes**)
 - can be “true” degeneracy, quantum states have exactly same energy, $\varepsilon_a = \varepsilon_b$
 - or can be near (extended) degeneracy $\varepsilon_a \approx \varepsilon_b$

$\varepsilon_1=0$	$\varepsilon_2=2$	$\varepsilon_3=4$
•	•	•

AE/ME 6765

Different Statistical Situations

- Examine 5 situations
 - 1) Distinguishable balls in set of boxes with number of balls in each box (N_i) prespecified
→Boltzmann statistics without degeneracy
(model for crystals)
 - 2) Same as (1) with degeneracy
→Boltzmann statistics with degeneracy
 - 3) Same as (2) but indistinguishable particles and **dilute**
($g_i > N_i$)=low probability of >1 particle in small box
→Corrected Boltzmann statistics
 - 4) Same as (3) but no restrictions on # particles per small box
→Bose-Einstein statistics
 - 5) Same as (3) but only one particle per small box
→Fermi-Dirac statistics (follow Pauli Exclusion Principle)

Enumeration of Microstates-9
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Ω and Macrostates

- Recall definition of macrostate
 - macrostate \equiv given unique distribution of N particles across energy levels (big boxes)
 - so a macrostate has specific N_i distribution
 - let $W(N_i) \equiv$ number of microstates in specific macrostate
- Also there are multiple macrostates per TD state
- Total number of microstates in TD state related to W

$\varepsilon_1=0$	$\varepsilon_2=2$	$\varepsilon_3=4$
•	•	
•		

both part of same macrostate

$\varepsilon_1=0$	$\varepsilon_2=2$	$\varepsilon_3=4$
•		
	•	

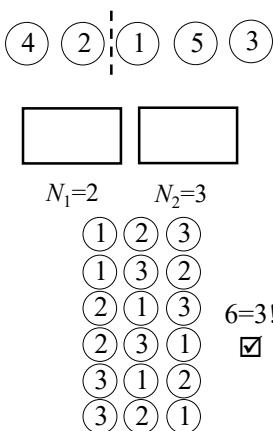
$$\Omega = \sum_{\text{macrostates with}} W(N_i) \\ \sum N_i = N \\ \sum N_i \varepsilon_i = E$$

Enumeration of Microstates-10
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Counting Microstates

- State with N “balls” (particles) and M “large boxes” (energy levels)
- Imagine 1) lining up the N balls then 2) sorting in order into large boxes
- 1st step – how many ways to line up N balls?
 - 1st ball: N choices
 - 2nd ball: $N-1$ choices
 - etc. $\Rightarrow N!$
- 2nd step – sorting into boxes



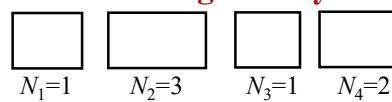
AE/ME 6765

Enumeration of Microstates-11
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

Sorting into Energy Levels

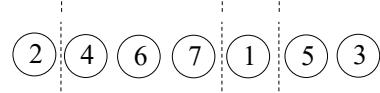
- Case 1) **Boltzmann Statistics w/o degeneracy**

– example $N=7, M=4$



– one of $N!$ lineups

– no different (can't “order” molec. in same state)



– $N_i!$ “lineups” are identical for each i

$$- \text{here } W = \frac{7!}{1!3!1!2!} = 420$$

lots of microstates even for only a few particles and boxes

$$W(N_i) = \frac{N!}{\prod_{i=1}^M N_i!}$$

← total # lineups
← total # redundant lineups

AE/ME 6765

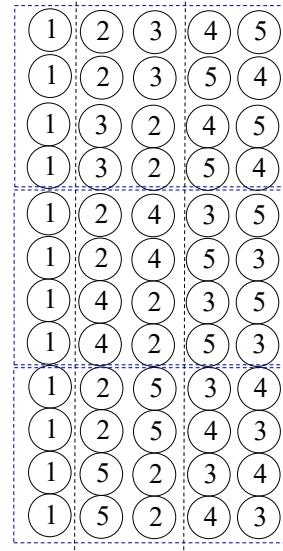
Enumeration of Microstates-12
Copyright ©2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

Another Example

- $N=5, M=3$

$$\begin{array}{|c|c|c|} \hline & & \\ \hline N_1=1 & N_2=2 & N_3=2 \\ \hline \end{array}$$

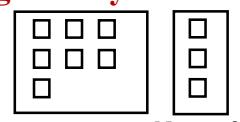
- Every four configurations are the “same”
 - $N_1! \cdot N_2! \cdot N_3! = 1 \cdot 2 \cdot 2 = 4 \quad \checkmark$



AE/ME 6765

Sorting into Energy Levels

- Case 2) **Boltzmann Statistics w/ degeneracy**
 - N particles, M large boxes, g_i small boxes in large box
 - ignoring g_i , $W(N_i) = \frac{N!}{\prod_{i=1}^M N_i!}$ already know
 - but now within each large box (energy level) $W(N_i) = \frac{N!}{\prod_{i=1}^M N_i!} \times \left(\begin{array}{l} \text{\# ways to arrange} \\ \text{balls into small boxes} \end{array} \right)$ g_i places to put a particle
 - how many particles allowed in each small box?
 - with no exclusion rule, as many as N_i



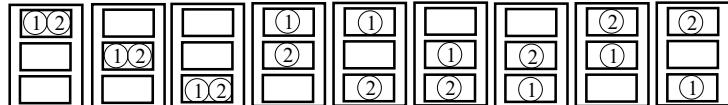
AE/ME 6765

Sorting into Energy Levels

- Case 2) **Boltzmann Statistics w/ degeneracy**

– how many ways to arrange N_i balls into g_i small boxes?

– e.g., $N_i=2, g_i=3$ gives 9 ($=3^2$)



$$\Rightarrow g_i^{N_i}$$

– since each big box (energy level) independent

$$W(N_i) = \frac{N!}{\prod_{i=1}^M N_i!} \prod_{i=1}^M g_i^{N_i}$$

Enumeration of Microstates-15
Copyright © 2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

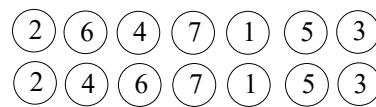
AE/ME 6765

Sorting into Energy Levels

- Case 3) **(Corrected) Boltzmann Statistics**

– now make balls/particles **indistinguishable**

$$W(N_i) = \frac{\cancel{X}}{\prod_{i=1}^M N_i!} \prod_i g_i^{N_i}$$



- Does not matter how we initially lineup balls

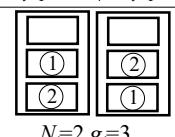
- BUT note from previous example we have now overcounted

- Not a problem if chance of overcounting negligible

\Rightarrow **corrected Boltzmann statistics**

so dilute **only valid for $g_i \gg N_i$**

$$W_{CB}(N_i) = \frac{\prod_{i=1}^M g_i^{N_i}}{\prod_{i=1}^M N_i!}$$



now the same microstate

$$N_i=2, g_i=3$$

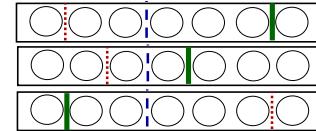
or number of quantum states available >> number of particles

Enumeration of Microstates-16
Copyright © 2009, 2022, 2023 by Jerry M. Seltzman.
All rights reserved.

AE/ME 6765

Sorting into Energy Levels

- Case 4) **Bose-Einstein Statistics**
 - indistinguishable particles
 - no limit on number of particles per quantum state (small box)
 - Bosons**
 - to avoid dilute requirement consider one large box (energy level) with $N_i=7$, $g_i=4$; but use $g_i-1=3$ partitions to mark them
 - gives us N_i+g_i-1 (10) things to arrange
 - if distinguishable $(N_i+g_i-1)!$ ways to line them up
 - but both balls and partitions are indistinguishable
 - $N_i!$ ($g_i-1!$) overcounts (balls distinguishable from partitions)
 - since each big box independent



$$W_{BE}(N_i) = \prod_{i=1}^M \frac{(N_i + g_i - 1)!}{N_i!(g_i - 1)!}$$

AE/ME 6765

Sorting into Energy Levels

- Case 5) **Fermi-Dirac Statistics**
 - now only one particles per quantum state (small box)
 - Fermions** (e.g., e^- spin)
 - place N_i (e.g., 3) particles in g_i (e.g., 7)
 - $g_i (=7)$ places to put 1st ball
 - $g_i-1 (=6)$ places to put 2nd ball
 - continue until no balls left $g_i - N_i + 1 (=5)$
 - but particles indistinguishable, overcounted by $N!$
 - since each big box independent

note: requires $g_i \geq N_i$ or would have more than one particle per quantum state so constrains (max) N_i

$$W_{FD}(N_i) = \prod_{i=1}^M \frac{g_i!}{N_i!(g_i - N_i)!}$$

AE/ME 6765

Boltzmann Limit

- Look at B-E and F-D cases for $g_i \gg N_i$, dilute, also known as the **Boltzmann Limit**

$$W_{FD} = \prod_{i=1}^M \frac{g_i!}{N_i!(g_i - N_i)!} = \prod_{i=1}^M \frac{g_i(g_i - 1)\dots(g_i - N_i + 1)}{N_i!} \approx (\leq) \prod_{i=1}^M \frac{g_i^{N_i}}{N_i!}$$

$$W_{BE} = \prod_{i=1}^M \frac{(N_i + g_i - 1)!}{N_i!(g_i - 1)!} = \prod_{i=1}^M \frac{(g_i + N_i - 1)(g_i + N_i - 2)\dots(g_i)}{N_i!} \approx (\geq) \prod_{i=1}^M \frac{g_i^{N_i}}{N_i!} = W_{CB}$$

- So in Boltzmann limit, no practical difference between Bose-Einstein and Fermi-Dirac statistics