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(Equilibrium) Statistical Mechanics

*  What statistical mechanics provides
1. calculation/prediction of equilibrium thermodynamic
(macroscopic) properties from molecular/microscopic properties
— examples
*  specific heats: ¢, ¢
*  compressibility coefficients: «, S,
2. insights into entropy, meaning of temperature

*  Overall strategy
— use QM to describe microscopic properties of system of interest
— invoke statistical connection between microscopic and
macroscopic properties (through entropy)

*  An extension, nonequilibrium statistical mechanics, provides information
on how systems evolve between equilibrium states
— not a subject of this presentation
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Statistical Mechanlcs Approaches

»  Two approaches to use statistical mechanics for calculating
macroscopic thermodynamic properties from microscopic
properties

+  Ensemble (Gibbs) method more powerful method,

but more abstract
—  most general approach
—  works for non-ideal (real) and ideal systems
* ideal = independent “particles” (atoms/molecules, electrons,
photons, ...); no interactions between particles

*  Maxwell-Boltzmann method easier to inter, /pret (learning v')

— original formulation and useful for ideal gases
— assumes isolated system of independent particles
»  works for ideal gases, electron gases, crystal solids, radiation

*  Both assume large number of microscopic components, so that
statistical/probabilistic methods apply
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Ensemble (Gibbs) Method

For completeness, begin by briefly introducing Gibbs method
What is an ensemble?

— theoretical collection of large number of systems, each replicates
macroscopic TD system of interest; entire ensemble is isolated

For example, consider a system of N particles, with a total
energy E and volume V' (named the microcanonical ensemble)

—  very large number (nearly infinite) of combinations of the 3N
positions and 3N momenta satisfy the (V,E,V) requirement

— each combination is one element of the ensemble

— time-averaged TD equilibrium properties based on ensemble-
averaged properties

Two other general ensembles
— canonical ensemble: closed isothermal system (known N,V,T")

— grand canonical ensemble: open isothermal sys. (known z,V,7)
chemical potential
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Maxwell-]i;lig:zmann Method Outline

» Developed for isolated macroscopic system with
specified (V,E, V) of independent particles
— essentially microcanonical ensemble of independent
particles
1. Need to describe microscopic systems

— each particle has well-defined, possible
quantum states
* independent because allowed quantum states
not impacted by molecular interactions &8;
— quantum states with same energy can be :
grouped into energy levels (&)
with degeneracies (g;) &8

— total energy is sum of energies of particles b8

&83
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Maxwell-Boltzmann Method Outline

2. Use probability and statistics
— determine number of different ways to distribute N particles
over energy levels (g;) while maintaining same overall
energy E (for given V)
— each distribution with unique combination of quantum
numbers for each particle is known as a microstate
— all microstates that have same number of particles in each
energy level are said to be part of the same macrostate
3. Macroscopic TD properties &g;
— determine which macrostate is most likely :

— relate this macrostate to macroscopic TD B8
properties through entropy 68
— a8
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M-B: Enumeration of Microstates

» Let’s look at simplified example | =0 | &,=2 | &:=2 | g,~4

to understand microstates . . . e |1
— macroscopic system with o o |2
N=4 indistinguishable particles | o . o |3
and with total energy £=8 R o . | 4
— microscopic system with 4 oo | oo 5
quantum states having energie e o 6
. 8129, &,=2, 832.2, e,~4 P 7

— some different unique ways we
.. . eocoe 8

can distribute our 4 particles
among these energy quantum b ?
states Ez8 | eo0 T—=1——7T o |10
Same as microstate 1 if | I:-————""’

indistinguishable particles * [ ° =
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Enumeration of Microstates

* Could also divide the 4 quantum =0 | 622 | 6,2 | 6,=4

states into 3 energy levels, with

one having degeneracy of 2

» So each microstate is a unique £=0 | &,=2 |e;=4
quantum configuration (state) of e |o o] o
the system, but has same TD/ ‘
macroscopic constraints
(E,V,N here)

— define Q = total number of Q= A 21 ‘
microstates with required N e with
macroscopic properties SN - E‘—‘

* Want to find Q constifaints

— will later relate to S Jor MB/

— use indistinguishable particles approact
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Particle Statistics
» Approach to finding Q

— consider indistinguishable =0 | &,=2 |e,~4

particles (balls) o [eieo]| o

— each must exist in some energy
level ( )

— each energy level can have
degeneracy ( )

* can be “true” degeneracy, quantum states have
exactly same energy, &,=¢,

* or can be near (extended) degeneracy ¢,~g,
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 Examine 5 situations

1) Distinguishable balls in set of boxes with number of balls in
each box (&V,) prespecified
—Boltzmann statistics without degeneracy
(model for crystals)
2) Same as (1) with degeneracy
—Boltzmann statistics with degeneracy
3) Same as (2) but indistinguishable particles and dilute
(g>>N,)=low probability of >1 particle in small box
—Corrected Boltzmann statistics
if dilute,| 4) Same as (3) but no restrictions on # particles per small box
reduce —Bose-FEinstein statistics
to(3) | '5) Same as (3) but only one particle per small box
—Fermi-Dirac statistics (follow Pauli Exclusion Principle)

N
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Q ﬁld Macrostates

» Recall definition of macrostate
— macrostate = given unique distribution of N particles

across energy levels (big boxes) =0 | &2 | &=

— S0 a macrostate has

. ® |
specific N, distribution both part of :
same macrostate, ;

— let W(N,) = number of microstates in [« | T-]

specific macrostate
 Also there are multiple macrostates per TD state

» Total number of microstates
in TD state related to W Q= 2W(N)
macrostates with
SN, =N
2N;g,=E

S AE/ME 6765
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Coungting Microstates
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 State with N “balls” (particles) and M ““large boxes”
(energy levels) |

* Imagine 1) lining up the N balls @ @:@ @ @
then 2) sorting in order into
large boxes

* 5t step — how many ways to line
up N balls?
* Istball: N choices
* 2nd ball: N—1 choices
s etc. = N!
« 2nd gtep — sorting into boxes

Ny

=
I

CEEEEE *
CEEEEOE
CEPEEE
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« Case 1) Boltzmann Statistics w/o degeneracy
— example N=7, M=4

N=1

N3
— one of N! lineups @ @ @ @

Ny=1

N=2
OO

— no different |
(can’t “order” molec. @ @ @ @@ @ @

in same state)

— N! “lineups” are W(N ): N! |<—total # lineups
identical for each i M
7 HNI,! ~—total #
— here W = e =420 P redundant
lots (gf’)ni('lf‘()sn.nc's 'ev'en‘ for only a few particles and boxes lineups
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Another Example

* N=5,M=3

N=1 N2 Ng=2

« Every four configurations are the |
“same”

i |
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Sorting;"ginto Energy Levels

» Case 2) Boltzmann Statistics w/ degeneracy

— N particles, M large boxes, g; small | O 00O g
boxes in large box i E 0o E
— ignoring g, W(N)=—5— N ;g=7 Ny;8,=3
already know [T™:
1

— but now within each N _ M #ways to arrange
W(N' ) T balls into small boxes

large box (energy level) [
g, places to put a particle o
— how many particles allowed in each small box?

* with no exclusion rule, as many as N,
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« Case 2) Boltzmann Statistics w/ degeneracy

— how many was to arrange N, balls into g; small
boxes?

—e.g., N=2, g=3 gives 9 (=3?)

[ o) o x|
m|lee @ =@
C 1)1 L 1[[D]|[[D]][[D]
=g
— since each big box (energy level) independent

N!

W(Ni): M glN
Ni! i=1
i=1
R — AE/ME 6765
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Sorting into Energy Levels

Case 3) (Corrected) Boltzmann Statistics
— now make balls/particles indistinguishable

i=1

¢ Does not nzlatter how we < N <
= N |
initially lineup balls Wes(N)=]1e / [~

* BUT note from previous example C ]
[@D]

now the same

we have now overcounted

. L= 1| microstate
* Not a problem if chance of IO
overcounting negligible o N=2,g=3
P l:> corrected Boltzmann statistics berof
so dilute . SSN. or number of quantum states
only valid for g>>N; available >> number of particles
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Sorting into Energy Levels

* Case 4) Bose-Einstein Statistics
— indistinguishable particles
— no limit on number of particles per quantum state (small box)
Bosons

— to avoid dilute requirement consider | OQ OO0 QIQ |

one large box (energy level) with .
NFT, g%=4; bugt use g—1=3 I)Jartitions | QQQ:QIQ Ol |
to mark them | Ql@ OOO OO |
— gives us N+g—1 (10) things to arrange
» if distinguishable (N,+g—1)! ways to line them up
— but both balls and partitions are indistinguishable
* N!(g—1!) overcounts (balls distinguishable from partitions)

g

eering

— since each big box independent M (N. +g _1)!
w. (N)=T[—-—<i L
0 N
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Sorting into Energy Levels

* Case 5) Fermi-Dirac Statistics
— now only one particles per quantum state (small box)
Fermions (e.g., e spin)
— place N, (e.g, 3) particles in g; (e.g., 7)
* g, (=7) placestoputIst ball 2 © ©
« g—1 (=6) places to put 2" ball HEEEEEE
+ continue until no balls left g;— N, +1 (=5)

8 (gi _1)"(Ni +g; _l)zgii!'

— but particles indistinguishable, overcounted by N!
— since each big box independent

M !

note: requires g N; or would have more | py ( N ) — H &i-
than one particle per quantum state FD\" i N '( N )|
so constrains (max) N; =1 V& i)
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Bgi}zmann Limit

* Look at B-E and F-D cases for g;>> N, dilute,
also known as the Boltzmann Limit

M g_! M g.(g.—l)--'(gl—N,+l) LM N; 3
W. = i — i \Si i i ~ : 20
v l:llNz'( t_Ni)! 1::1[ N (S)j":] Ni!
W :ﬁ(Nl+gi_1)':ﬁ(gi+Nl_1xgz+N1_2) (gl)z(>)Mi
o Nlg - N,! i N
S CB
* So in Boltzmann limit, no practical difference
between Bose-Einstein and Fermi-Dirac statistics
S AE/ME 6765
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