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Statistical Thermo. and TD Properties

 Still need to find # and way to connect Statistical
Mechanics to Thermodynamics

- eg,0,N/N—>p,T,S,etc.
* Following Boltzmann... will look for analogy between
entropy and randomness (disorder)
* Approach
— examine some closed systems

— motivate Boltzmann’s relation
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Entropy and Volume Change

* Perfect gas in insulated rigid box R 2
divided into two equal cells by oot
removable partition °g0%

— start with all gas in cell #1 %

— remove partition, end with gas in both cells

* Gibbs for process
. dE in stat me(ih 0 gy
entropy increased with more
ds = ? d%"' £ dv= ? qu— Nk 7 possible locations of finding

particles — increased disorder

pV =nRT = NkT

14
—Nk7 — AS=Nk1n%=Nkln2=kln2N

1
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Entropy;and Energy Change

* Now fix volume 0 Q; o
— and double energy (and temperature) -"00. ...0.0.
through heat transfer Py .‘ ::.
®

* Gibbs for process

dS:ldE+de/7I/

dT c, dE entropy increased with more
= C —=Nk—>— possible (accessible) energy levels
T R E — increased disorder

AS = Nk Vln = Nk<n2= kanR
R R

c,=const.
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Entropy and Microstates

» Examples show there is relation between entropy and
number of “places” particles can be

— i.e., between S and Q, or S=0(Q)
e What should function ® look like?
— look at how systems combine

* Entropy is extensive

S S.
= §1:5=5,%5, Ql QZ
+ Number of microstates are multiplicative | -—— 1 [ 22]]
— Q,=QxQ,  absolute const.— ;— constant for
* General form required S=aln Q+bIN given system
see V&K p. 114 _
P S=klnQ+S,

_1

Boltzmann’s const.
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S=klnQ+S§,

* Analogous to 3" Law, let S=0 for perfectly ordered
system (Q2=1)
- S5~=0

e S S=klnQ Boltzmann’s
© Relation

— our approach was not rigorous derivation
— we used perfect gas to motivate — but true in general
— also, based on postulate: equal a priori probability
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fherpmg(;gdynamic Relations

* Forlarge N, we know we can get Q . o =~ |nw

max

from most probable macrostate 0
+ Using Boltzmann limit W .. =N (1 +In ﬁj +pE
S= /{N(l +In %) T ﬂE} 0= ge”

S:kNln%+kN+kﬂE

» Can now get £ by comparing to TD state relation

(Gibb’s)
dS:a—S dE+a—S dV+a—S dN
V.N oV E,N EV
1T p/T —u/T
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Thermodynamlc Relations

* So look at partial derivatives

_ Q
of Statistical Mechanics eqn. §=kN lnﬁ +kN +kpE

* B :kN[aan ol }k[% E+ﬁ}
I/T E V.N 6E V,N Op/aE V,N aE V,N
lszlﬁQ +I{% E+,B}
r Q V,.N aE V,N
op 3E|, ,
9 T |
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Thermodynamlc Relations
« OE (con t)
1 —QE op

0
M aEVN+k|: a_gVN-FIB}

&R% v

L=1/kT | ey g — kNln—+kN+?

S8 =S(N,E,T,Q) Partition

- X Function
TD variables = Zgig_‘gf/kT
i
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Pressure and Partition Function

Alternative to Helmholtz

as el
. Examine &5 -2 e e
Vegy T 0
— since S=S(E,V,N,) S=kNIn=+kN +kpE
as| _as| a8
ov EN oV E.N,B=1/kT 0 EV.N o E.N
0
L_ a(kNan+kN+k,BEj
T oV N ENp 0
p_ 0 ( wvin 2 j _dkvimQ) a(kNl/N)\
r ov N E.N.j ov ‘E,N,ﬂ 5/ ‘E,N,/}’
p_ kN Is 0=0(V)? Yes!!
T ov |, Nr)| O= Zgie_ﬁ & ,=f(L,L,L))
AE/MF 6765
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Chemlcal Potential and Q

. — ﬂ +— per molec.
Examine 201 === S=kNlng+kN+k,BE
oS oS 0 op
ON EV ON EV.B ;%LV,N ON EV Z )
_ 0
“‘:a(kNan+kN+kﬂE)
T N N EV.p
—ﬁ:@(kan%N] - kN[aln/é —dl/N]Jrkan Tk
I ©N N v ?/’ ‘EV /IN N
= 0 0 1/N
ﬁ:—kln—
T N
recall e al al In< 1/ kT
— = - 5~ >o=I— =Da=—
Zgl.e N N #
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Energy and Partition Function

+ Let’s examine relationship between Q and other TD
variables

00_ OF _ ,_ N

e Recall in findin wesaw —=—-=—=FE=
— so to find £ N 60 oT
T Qarop
=1/kT = = ap —% © p
dT kT :_ﬁ(_sz)@ _ N2 L2
0 oT 0 aoT
E = NkT? OlnQ way to find E if N, Q, T known
— also ¢,=? or R=k/m,,;m=Nm,,
_ de olnQ ., 0 _ o2 00
“=ar o= R{zT e +T° e e=RT"—
AE/ME 6765
Summary
* Derived TD properties using
— Boltzmann’s relation S=kInQ)  generally true (a priori prob.)

— Boltzmann (dilute) limit InW, =N 1+1n2 +£
for weakly interacting molec.

—enr N, g.e’c"/”
— examples 0= ge /M Lo
2 N o
E ol Parliti.on Boltzmann
S=kN|1+1n 2 +— E= kNTZLQ Function Distribution
N T or |, .
~ iver
o1 For given
Z=kN—= nQ H_ —k 1n2 - substance (g;,&;)
T oV ey T N - state (e.g., E,N,V)
‘ s ‘ we can find all
_ 20In Q 0" In Q D props.,
L= RT{ T +T e ‘ } +OTHERS " including c,
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BE-FD Results

* If we remove Boltzmann limit assumption
— but retain independent (weakly interacting) particles

_ g EN), &N,
In W[gﬂ = Z[N,. lnig, lnxgi/(j »

* For most probable macrostate N,-*[BE] = &g e

FD

g, A lie—a*ﬂs, ie*a*ﬂ& _ ea+/36',
N,‘* eiaiﬁg' e‘ﬂk/’g’ _ 1F¥ eia?ﬁ‘g’ + eiuiﬂgt _ (1 - P )*1
T aBe T P =l+e
1¥e 1¥e

=MW, =W (a+ps)Fg miFe )
TN

S=kinlW,,, .S =k(aN+BE)TkY {g, In{1Fe 7 )}
AE/ME 6765
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BE-FD Results
§ = klaN + BE)F kY. g, (17 e )}

» To get a, £ for BE and FD statistics, compare to TD
S expression

) :l:kﬁ = B=1/kT
CE|,y T Same results we found in
as ' ~ Boltzmann limit!!

EV but we do have a modified

population distribution over
energy levels

« g,
i (2] e(ft ~H)/kT F1

FD
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BE-FD Results

* Plug back into S expression

e eon
s=£ T’uNingiln(lie r ]

¢ Pressure
In Boltzmann limit
oS D 0¢, ol
ia =—=p=- Ni ! = NkT n Q
oV EN T Zz: ov EN p oV EN

» So properties still only function of g,, &,
but now we no can longer employ the simpler partition
function expressions

» For most general case (interacting particles), need to
employ Gibbs method (canonical ensembles, see texts by
Denbigh or McQuarrie or Laurendeau)
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Interpretation of Properties

* Originally, our examination of the “state” of a substance
(group of particles) depended only on the particles’
microscopic properties (&, g;) and the system’s extensive
properties (£, ¥, N)

* When we defined the Lagrange multipliers for the most
probably macrostate and related them to entropy, we then
found “definitions” for 7, p, p, etc.

— thus properties like temperature and pressure can only be
defined for groups of particles

— they are essentially statistical quantities, defined based on
averaging over groups of particles

* For example, what is the statistical thermodynamic
interpretation of 77
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Stat. Thermo. Interpretation of 7

* Consider Boltzmann (limit) population distribution

—&; kT —&; [kT

g N g - ee,
N, _sge N _ge T & et

e
N 0 N, g e J/kT g,

N./g, Ni/gi T
In—+2l =g —¢. JJkT In *

& —&,

-1
rofii iy Nig "
k N/g;
* So temperature is the measure of how the particles are
distributed amount the energy levels

— for a given tpg gas (g;, &) in equilibrium, T is the ONLY
thing needed to determine the energy population distribution

k
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Interpretation of Q

» Let’s look at what the partition function (Q) represents
« Recall 0= > g e = g, + g ekl + g ookl + g skl +
— arbitrarily chose the lowest energy level to have £=0

— each term increases until 7>>g;
— approachesg; x 1 =g;

* Recall g; is number of quantum
states in energy level i

— so Q is summing up all the quantum 0
states, weighted by how accessible 0 2 4 6

. . . Tre,
they are molecules more likely to be found in energy levels
that are more accessible and have more states

— if T<< g, quantum states in energy level i aren’t contributing much to
the sum; their energy is too high at that 7, and aren’t very accessible

* Also note - for energy levels with T7>>¢,, N/N, = g/g;

0.1

0.01

exp(-g/kT)
)
o

o
N
a

0.001

0.0001
8
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