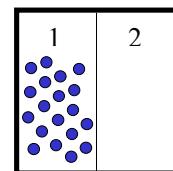


Statistical Thermo. and TD Properties

- Still need to find β and way to connect Statistical Mechanics to Thermodynamics
 - e.g., $Q, N_i/N \rightarrow p, T, S$, etc.
- Following Boltzmann... will look for analogy between *entropy* and *randomness* (disorder)
- Approach
 - examine some closed systems
 - motivate Boltzmann's relation

Entropy and Volume Change

- Perfect gas in insulated rigid box divided into two equal cells by removable partition
 - start with all gas in cell #1
 - remove partition, end with gas in both cells



$$dS = \frac{1}{T} dE + \frac{p}{T} dV = \frac{1}{T} dE + Nk \frac{dV}{V}$$

entropy increased with more possible locations of finding particles → increased disorder

$$= Nk \frac{dV}{V} \quad \longrightarrow \quad \Delta S = Nk \ln \frac{V_2}{V_1} = Nk \ln 2 = k \ln 2^N$$

Entropy and Energy Change

- Now fix volume
 - and double energy (and temperature) through heat transfer

- Gibbs for process

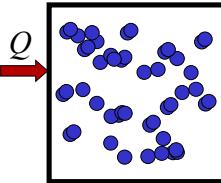
$$dS = \frac{1}{T} dE + Nk \frac{dV}{V} \xrightarrow{0}$$

$$= C_v \frac{dT}{T} = Nk \frac{c_v}{R} \frac{dE}{E}$$

entropy increased with more possible (accessible) energy levels
→ increased disorder

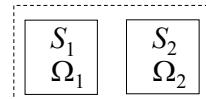
$$\Delta S = Nk \frac{c_v}{R} \ln \frac{E_2}{E_1} = Nk \frac{c_v}{R} \ln 2 = k \ln 2^{\frac{c_v}{R} N}$$

$c_v = \text{const.}$



Entropy and Microstates

- Examples show there is relation between entropy and number of “places” particles can be
 - i.e., between S and Ω , or $S = \Phi(\Omega)$
- What should function Φ look like?
 - look at how systems combine
- Entropy is extensive
 - $S_{1+2} = S_1 + S_2$
- Number of microstates are multiplicative
 - $\Omega_{1+2} = \Omega_1 \times \Omega_2$ absolute const. → constant for given system
- General form required
 - see V&K p. 114
 - $S = a \ln \Omega + bN$
 - $S = k \ln \Omega + S_o$
 - Boltzmann's const. ↑



Boltzmann's Relation

$$S = k \ln \Omega + S_0$$

- Analogous to 3rd Law, let $S=0$ for perfectly ordered system ($\Omega=1$)
 - $S_0=0$
- So $S = k \ln \Omega$ **Boltzmann's Relation**
 - our approach was not rigorous derivation
 - we used perfect gas to motivate – but true in general
 - also, based on postulate: **equal *a priori* probability**

Thermodynamic Relations

- For large N , we know we can get Ω $\ln \Omega \approx \ln W_{\max}$ from most probable macrostate
- Using Boltzmann limit $\ln W_{\max} = N \left(1 + \ln \frac{Q}{N} \right) + \beta E$

$$S = k \left[N \left(1 + \ln \frac{Q}{N} \right) + \beta E \right]$$

$$Q \equiv \sum_i g_i e^{-\beta \epsilon_i}$$

$$S = kN \ln \frac{Q}{N} + kN + k\beta E$$
- Can now get β by comparing to TD state relation (Gibb's)

$$dS = \frac{\partial S}{\partial E} \bigg|_{V,N} dE + \frac{\partial S}{\partial V} \bigg|_{E,N} dV + \frac{\partial S}{\partial N} \bigg|_{E,V} dN$$

$$1/T \quad p/T \quad -\mu/T$$

Thermodynamic Relations

- So look at partial derivatives of Statistical Mechanics eqn

$$S = kN \ln \frac{Q}{N} + kN + k\beta E$$

- ∂E

$$\frac{\partial S}{\partial E} \Big|_{V,N} = kN \left[\frac{\partial \ln Q}{\partial E} \Big|_{V,N} - \frac{\partial \ln N}{\partial E} \Big|_{V,N} \right] + k \left[\frac{\partial \beta}{\partial E} \Big|_{V,N} E + \beta \right]$$

$$\frac{1}{T} = kN \frac{1}{Q} \frac{\partial Q}{\partial E} \Big|_{V,N} + k \left[\frac{\partial \beta}{\partial E} \Big|_{V,N} E + \beta \right]$$

$$\frac{\partial Q}{\partial \beta} \frac{\partial \beta}{\partial E} \Big|_{V,N}$$

$$\frac{\partial Q}{\partial \beta} = - \sum \varepsilon_i g_i e^{-\beta \varepsilon_i} = - \sum \varepsilon_i \frac{Q N_i}{N} = - \frac{Q}{N} \sum \varepsilon_i N_i = - \frac{Q E}{N}$$

Thermodynamic Relations

- ∂E (con't)

$$\frac{1}{T} = kN \frac{1}{Q} \frac{-QE}{N} \frac{\partial \beta}{\partial E} \Big|_{V,N} + k \left[E \frac{\partial \beta}{\partial E} \Big|_{V,N} + \beta \right]$$

$$= -kE \frac{\partial \beta}{\partial E} \Big|_{V,N} + k \left[E \frac{\partial \beta}{\partial E} \Big|_{V,N} + \beta \right]$$

$$\boxed{\beta = 1/kT} \quad \longrightarrow S = kN \ln \frac{Q}{N} + kN + \frac{E}{T}$$

$$\therefore S = S \left(\underbrace{N, E, T, Q}_{TD \text{ variables}} \right) \quad \begin{array}{l} \text{Partition} \\ \text{Function} \end{array}$$

$$= \sum_i g_i e^{-\varepsilon_i/kT}$$

Pressure and Partition Function

- Examine $\frac{\partial S}{\partial V} \Big|_{E,N} = \frac{p}{T}$

Alternative to Helmholtz
Free Energy derivation
in V&K, p. 118

– since $S = S(E, V, N, \beta)$ $S = kN \ln \frac{Q}{N} + kN + k\beta E$

$$\frac{\partial S}{\partial V} \Big|_{E,N} = \frac{\partial S}{\partial V} \Big|_{E,N, \beta=1/kT} + \frac{\partial S}{\partial \beta} \Big|_{E,V,N} \frac{\partial \beta}{\partial V} \Big|_{E,N}$$

$$\frac{p}{T} = \frac{\partial}{\partial V} \left(kN \ln \frac{Q}{N} + kN + k\beta E \right) \Big|_{E,N,\beta}$$

$$\frac{p}{T} = \frac{\partial}{\partial V} \left(kN \ln \frac{Q}{N} \right) \Big|_{E,N,\beta} = \frac{\partial (kN \ln Q)}{\partial V} \Big|_{E,N,\beta} - \frac{\partial (kN \ln N)}{\partial V} \Big|_{E,N,\beta}$$

$$\boxed{\frac{p}{T} = kN \frac{\partial \ln Q}{\partial V} \Big|_{E,N,(T)}} \quad \text{Is } Q = Q(V)? \quad \text{Yes!!}$$

$$Q \equiv \sum_i g_i e^{-\beta \varepsilon_i}$$

$$\varepsilon_{i,tr} = f(L_x, L_y, L_z)$$

Statistical Thermodynamic Relations-8
Copyright © 2009, 2022, 2023, 2025 by Jerry M. Selzman. All rights reserved.

AE/ME 6765

Chemical Potential and Q

- Examine $\frac{\partial S}{\partial N} \Big|_{E,V} = -\frac{\tilde{\mu}}{T} \leftarrow \text{per molec.}$

$$S = kN \ln \frac{Q}{N} + kN + k\beta E$$

$$\frac{\partial S}{\partial N} \Big|_{E,V} = \frac{\partial S}{\partial N} \Big|_{E,V,\beta} + \frac{\partial S}{\partial \beta} \Big|_{E,V,N} \frac{\partial \beta}{\partial N} \Big|_{E,V} \quad Q = \sum_i g_i e^{-\beta \varepsilon_i} = Q(T, V)$$

$$\frac{-\tilde{\mu}}{T} = \frac{\partial}{\partial N} \left(kN \ln \frac{Q}{N} + kN + k\beta E \right) \Big|_{E,V,\beta}$$

$$\frac{-\tilde{\mu}}{T} = \frac{\partial}{\partial N} \left(kN \ln \frac{Q}{N} + kN \right) \Big|_{E,V} = \left[kN \left(\frac{\partial \ln Q}{\partial N} \Big|_{E,V} - \frac{d \ln N}{d N} \right) + k \ln \frac{Q}{N} \right] + k$$

$$\boxed{\frac{\tilde{\mu}}{T} = -k \ln \frac{Q}{N}}$$

– recall $e^{-\alpha} = \frac{N}{\sum_i g_i e^{-\beta \varepsilon_i}} = \frac{N}{Q} \Rightarrow \alpha = \ln \frac{Q}{N} \Rightarrow \alpha = -\tilde{\mu}/kT$

Statistical Thermodynamic Relations-10
Copyright © 2009, 2022, 2023, 2025 by Jerry M. Selzman. All rights reserved.

AE/ME 6765

Energy and Partition Function

- Let's examine relationship between Q and other TD variables

- Recall in finding β , we saw $\frac{\partial Q}{\partial \beta} = -\frac{QE}{N} \Rightarrow E = -\frac{N}{Q} \frac{\partial Q}{\partial \beta}$
so to find E

$$\begin{aligned} \beta = 1/kT \Rightarrow \frac{d\beta}{dT} &= -\frac{1}{kT^2} & E &= -\frac{N}{Q} \frac{\partial Q}{\partial T} \frac{\partial T}{\partial \beta} \\ & & &= -\frac{N}{Q} (-kT^2) \frac{\partial Q}{\partial T} = NkT^2 \frac{1}{Q} \frac{\partial Q}{\partial T} \\ \text{--- also } c_v &=? & E &= NkT^2 \frac{\partial \ln Q}{\partial T} \quad \text{way to find } E \text{ if } N, Q, T \text{ known} \\ c_v &= \frac{de}{dT} & c_v &= R \left[2T \frac{\partial \ln Q}{\partial T} + T^2 \frac{\partial^2 \ln Q}{\partial T^2} \right] \quad R = k/m_{part}; m = Nm_{part} \\ & & & e = RT^2 \frac{\partial \ln Q}{\partial T} \end{aligned}$$

Statistical Thermodynamic Relations-11
Copyright © 2009, 2022, 2023, 2025 by Jerry M. Seitzman. All rights reserved.

AE/ME 6765

Summary

- Derived TD properties using

– Boltzmann's relation $S = k \ln \Omega$ generally true (a priori prob.)

– Boltzmann (dilute) limit $\ln W_{\max} = N \left(1 + \ln \frac{Q}{N} \right) + \frac{E}{kT}$
for weakly interacting molec.

– examples $Q \equiv \sum_i g_i e^{-\varepsilon_i/kT} \frac{N_i}{N} = \frac{\sum_i g_i e^{-\varepsilon_i/kT}}{Q}$

$$S = kN \left(1 + \ln \frac{Q}{N} \right) + \frac{E}{T} \quad E = kNT^2 \frac{\partial \ln Q}{\partial T} \Big|_v \quad \begin{array}{l} \text{Partition} \\ \text{Function} \end{array} \quad \begin{array}{l} \text{Boltzmann} \\ \text{Distribution} \end{array}$$

$$\frac{p}{T} = kN \frac{\partial \ln Q}{\partial V} \Big|_{E,N} \quad \frac{\tilde{\mu}}{T} = -k \ln \frac{Q}{N} \quad \text{For given} \\ \text{- substance } (g_i, \varepsilon_i) \\ \text{- state (e.g., } E, N, V \text{)}$$

$$c_v = RT \left[\frac{2 \partial \ln Q}{\partial T} \Big|_v + T \frac{\partial^2 \ln Q}{\partial T^2} \Big|_v \right] \quad \boxed{+ OTHERS} \quad \text{we can find all} \\ \text{TD props.,} \\ \text{- including } c_v$$

Statistical Thermodynamic Relations-12
Copyright © 2009, 2022, 2023, 2025 by Jerry M. Seitzman. All rights reserved.

AE/ME 6765

BE-FD Results

- If we remove Boltzmann limit assumption
 - but retain **independent (weakly interacting) particles**

$$\ln W_{[FD]}^{[BE]} = \sum_i \left(N_i \ln \frac{g_i \pm N_i}{N_i} \pm g_i \ln \frac{g_i \pm N_i}{g_i} \right)$$

- For most probable macrostate $N_i^{*}_{[FD]} = g_i \frac{e^{-\alpha - \beta \varepsilon_i}}{1 \mp e^{-\alpha - \beta \varepsilon_i}}$

$$\frac{g_i}{N_i^{*} \pm 1} = \frac{1 \mp e^{-\alpha - \beta \varepsilon_i} \pm e^{-\alpha - \beta \varepsilon_i}}{e^{-\alpha - \beta \varepsilon_i}} = e^{\alpha + \beta \varepsilon_i}$$

$$\frac{1 \pm N_i^{*}}{g_i} = 1 \pm \frac{e^{-\alpha - \beta \varepsilon_i}}{1 \mp e^{-\alpha - \beta \varepsilon_i}} = \frac{1 \mp e^{-\alpha - \beta \varepsilon_i} \pm e^{-\alpha - \beta \varepsilon_i}}{1 \mp e^{-\alpha - \beta \varepsilon_i}} = (1 \mp e^{-\alpha - \beta \varepsilon_i})^{-1}$$

$$\Rightarrow \ln W_{\max}^{[FD]} = \sum_i \left\{ N_i^{*} (\alpha + \beta \varepsilon_i) \mp g_i \ln (1 \mp e^{-\alpha - \beta \varepsilon_i}) \right\}$$

$$S = k \ln W_{\max} \quad \therefore S = k(\alpha N + \beta E) \mp k \sum_i \left\{ g_i \ln (1 \mp e^{-\alpha - \beta \varepsilon_i}) \right\}$$

AE/ME 6765

BE-FD Results

$$S = k(\alpha N + \beta E) \mp k \sum_i \left\{ g_i \ln (1 \mp e^{-\alpha - \beta \varepsilon_i}) \right\}$$

- To get α, β for BE and FD statistics, compare to TD S expression

$$\frac{\partial S}{\partial E} \Big|_{V,N} = \frac{1}{T} = k\beta \Rightarrow \beta = 1/kT$$

Same results we found in Boltzmann limit!!

$$\frac{\partial S}{\partial N} \Big|_{E,V} = \frac{-\tilde{\mu}}{T} = k\alpha \Rightarrow \alpha = -\tilde{\mu}/kT$$

but we do have a modified population distribution over energy levels

$$N_i^{*}_{[FD]} = \frac{g_i}{e^{(\varepsilon_i - \tilde{\mu})/kT} \mp 1}$$

AE/ME 6765

BE-FD Results

- Plug back into S expression

$$S = \frac{E - \tilde{\mu}N}{T} \mp k \sum_i g_i \ln \left(1 \mp e^{-\frac{\varepsilon_i - \tilde{\mu}}{kT}} \right)$$

- Pressure

$$\left. \frac{\partial S}{\partial V} \right|_{E,N} = \frac{p}{T} \Rightarrow p = - \sum_i N_i \left. \frac{\partial \varepsilon_i}{\partial V} \right|_{E,N} \quad \text{In Boltzmann limit}$$

$$p = NkT \left. \frac{\partial \ln Q}{\partial V} \right|_{E,N}$$

- So properties still only function of g_i , ε_i , but now we no longer employ the simpler partition function expressions
- For most general case (interacting particles), need to employ Gibbs method (canonical ensembles, see texts by Denbigh or McQuarrie or Laurendeau)

Interpretation of Properties

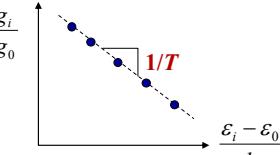
- Originally, our examination of the “state” of a substance (group of particles) depended only on the particles’ microscopic properties (ε_i , g_i) and the system’s extensive properties (E , V , N)
- When we defined the Lagrange multipliers for the most probable macrostate and related them to entropy, we then found “definitions” for T , μ , p , etc.
 - thus properties like temperature and pressure can only be defined for groups of particles
 - they are essentially statistical quantities, defined based on averaging over groups of particles
- For example, what is the statistical thermodynamic interpretation of T ?

Stat. Thermo. Interpretation of T

- Consider Boltzmann (limit) population distribution

$$\frac{N_i}{N} = \frac{g_i e^{-\varepsilon_i/kT}}{Q} \Rightarrow \frac{N_i}{N_j} = \frac{g_i e^{-\varepsilon_i/kT}}{g_j e^{-\varepsilon_j/kT}} = \frac{g_i}{g_j} e^{-(\varepsilon_i - \varepsilon_j)/kT}$$

$$\ln \frac{N_i/g_i}{N_j/g_j} = -(\varepsilon_i - \varepsilon_j)/kT \quad \ln \frac{N_i/g_i}{N_0/g_0} = -(\varepsilon_i - \varepsilon_0)/kT$$

$$T = \frac{\varepsilon_i - \varepsilon_0}{k} \left(\ln \frac{N_j/g_j}{N_i/g_i} \right)^{-1}$$


- So temperature is the measure of how the particles are distributed among the energy levels
 - for a given tpg gas (g_i, ε_i) in equilibrium, T is the ONLY thing needed to determine the energy population distribution

Interpretation of Q

- Let's look at what the partition function (Q) represents
- Recall $Q = \sum g_i e^{-\varepsilon_i/kT} = g_0 + g_1 e^{-\varepsilon_1/kT} + g_2 e^{-\varepsilon_2/kT} + g_3 e^{-\varepsilon_3/kT} + \dots$
 - arbitrarily chose the lowest energy level to have $\varepsilon = 0$
- What happens as we raise the temperature to each term?
 - each term increases until $T \gg \varepsilon_i$
 - approaches $g_i \times 1 = g_i$
- Recall g_i is number of quantum states in energy level i
 - so Q is summing up all the quantum states, weighted by how **accessible** they are *molecules more likely to be found in energy levels that are more accessible and have more states*
 - if $T \ll \varepsilon_i$, quantum states in energy level i aren't contributing much to the sum; their energy is too high at that T , and aren't very **accessible**
- Also note - for energy levels with $T \gg \varepsilon_i$, $N_i/N \approx g_i/g_j$

