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Statistical Thermo. and TD Properties

• Still need to find  and way to connect Statistical 

Mechanics to Thermodynamics

– e.g., Q, Ni/N  p, T, S, etc.  

• Following Boltzmann… will look for analogy between 

entropy and randomness (disorder)

• Approach

– examine some closed systems

– motivate Boltzmann’s relation
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Entropy and Volume Change

• Perfect gas in insulated rigid box 
divided into two equal cells by 
removable partition

– start with all gas in cell #1

– remove partition, end with gas in both cells

• Gibbs for process  
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• Now fix volume

– and double energy (and temperature) 

through heat transfer

• Gibbs for process  

Entropy and Energy Change
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Entropy and Microstates

• Examples show there is relation between entropy and 
number of “places” particles can be

– i.e., between S and , or S=()

• What should function  look like?

– look at how systems combine

• Entropy is extensive

– S1+2=S1+S2

• Number of microstates are multiplicative

– 1+2=12

• General form required

S1

1

S2

2

see V&K  p. 114

absolute const. constant for 

given system

Boltzmann’s const.

S = a ln + bN

S = k ln + So
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Boltzmann’s Relation

• Analogous to 3rd Law, let S=0 for perfectly ordered 

system (=1)

– S0=0

• So

– our approach was not rigorous derivation

– we used perfect gas to motivate – but true in general

– also, based on postulate: equal a priori probability

Boltzmann’s 
Relation

S = k ln 

S = k ln  + So
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Thermodynamic Relations

• For large N, we know we can get 
from most probable macrostate

• Using Boltzmann limit

• Can now get  by comparing to TD state relation 
(Gibb’s)
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Thermodynamic Relations

• So look at partial derivatives 

of Statistical Mechanics eqn.
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Thermodynamic Relations

• E (con’t)
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Pressure and Partition Function

• Examine

– since S=S(E,V,N,) EkkN
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Chemical Potential and Q

• Examine

– recall
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Energy and Partition Function

• Let’s examine relationship between Q and other TD 
variables

• Recall in finding , we saw

– so to find E

– also cv=?
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Summary
• Derived TD properties using

– Boltzmann’s relation S=kln

– Boltzmann (dilute) limit
for weakly interacting molec.

– examples

generally true (a priori prob.)
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BE-FD Results
• If we remove Boltzmann limit assumption

– but retain independent (weakly interacting) particles

• For most probable macrostate
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BE-FD Results

• To get ,  for BE and FD statistics, compare to TD 
S expression

Same results we found in 
Boltzmann limit!!
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BE-FD Results
• Plug back into S expression

• Pressure

• So properties still only function of gi, i, 
but now we no can longer employ the simpler partition 
function expressions

• For most general case (interacting particles), need to 
employ Gibbs method (canonical ensembles, see texts by 
Denbigh or McQuarrie or Laurendeau)

In Boltzmann limit
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Interpretation of Properties

• Originally, our examination of the “state” of a substance 
(group of particles) depended only on the particles’ 
microscopic properties (i, gi) and the system’s extensive 
properties (E, V, N)

• When we defined the Lagrange multipliers for the most 
probably macrostate and related them to entropy, we then 
found “definitions” for T, , p, etc. 

– thus properties like temperature and pressure can only be 
defined for groups of particles

– they are essentially statistical quantities, defined based on 
averaging over groups of particles

• For example, what is the statistical thermodynamic 
interpretation of T?
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Stat. Thermo. Interpretation of T

• Consider Boltzmann (limit) population distribution

• So temperature is the measure of how the particles are 
distributed amount the energy levels

– for a given tpg gas (gi, i) in equilibrium, T is the ONLY 
thing needed to determine the energy population distribution
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Interpretation of Q
• Let’s look at what the partition function (Q) represents

• Recall  Q =  gi e-i/kT = g0 + g1e
-1/kT + g2e

-2/kT + g3e
-3/kT +…

– arbitrarily chose the lowest energy level to have  = 0

• What happens as we raise the temperature to each term?

– each term increases until T >>i

– approaches gi  1 = gi

• Recall gi is number of quantum
states in energy level i

– so Q is summing up all the quantum
states, weighted by how accessible
they are

– if T << i , quantum states in energy level i aren’t contributing much to 
the sum; their energy is too high at that T, and aren’t very accessible

• Also note - for energy levels with T >>i , Ni/Nj  gi/gj

molecules more likely to be found in energy levels 
that are more accessible and have more states
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