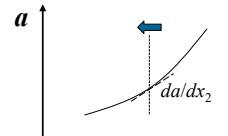


Transport Properties

- Consider the **diffusional transport** properties of a gas (or any matter)
- Diffusion usually modeled as proportional to gradient of some macroscopic property (a)



Fourier's Law

$$\text{"heat" flux } q_2 = -k \frac{dT}{dx_2}$$

thermal conductivity

Newtonian Fluid

$$\text{shear stress } \tau_{12} = \mu \frac{du_1}{dx_2}$$

(dynamic) viscosity

Fickian Diffusion

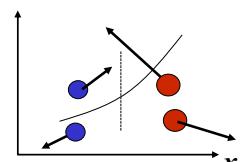
$$\text{diffusive mass flux } j_{A,2} = -D_{AB} \frac{d\rho_A}{dx_2}$$

mass diffusivity (or diffusion coefficient)

- Each of these is a flux of some property: energy, momentum, mass
 - due to a nonequilibrium condition (gradient)

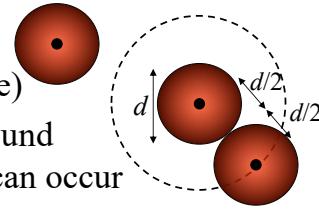
Diffusion and Molecular Motion

- What is the source/cause of diffusion?
 - a molecule “carries” its properties as it moves
 - diffusion is transport of a property by the random motion of molecules*
 - recall – already illustrated that pressure results from one-way momentum flux (transport) due to random molecular motion
- When collision occurs, molecular property transport by that molecule’s journey ends (momentum & energy transferred)
- So rate of diffusion ought to be related to
 - how far molecule moves before a “collision” = **mean free path**
 - and how often collisions occur = **collision frequency**
- Basic understanding of these concepts can be developed using simple “hard-sphere” model



Simple Collision Estimation Model

- Consider hard sphere gas molecules of diameter d (all alike)
- Can describe a simple region around each molecule where collisions can occur
 - sphere-of-influence with radius d ($=d/2+d/2$)**
 - collision occurs whenever distance between molecular centers closes to this value
- Now that we have defined “when” a collision occurs, can ask how often collisions occur



Collision Frequency

- Consider path swept out by our molecule
- Number of collisions depends on number of other molecules in its path

$$\begin{aligned}
 &= V_{cylinder} \times n \sim \text{number density} \\
 &= A_{cyl} \times L \times n \\
 &= \pi d^2 \times \bar{C} \Delta t \times n
 \end{aligned}$$

assume molecule moves with avg. molec. speed

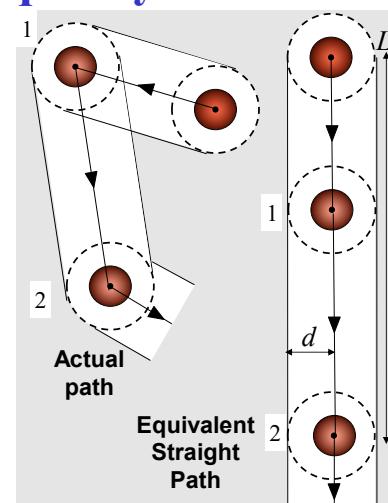
- Then **collision frequency**

$$\theta = n(\pi d^2) \bar{C}$$

$$\theta = n \sigma \bar{C}$$

collision cross-section

not same as LJ parameter

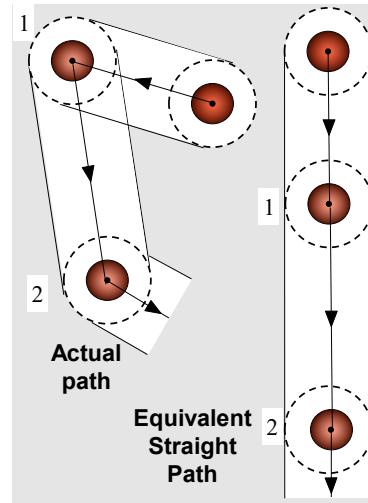


Mean Free Path

- How far (on average) will our molecule travel between collisions?
 - given by
$$\text{time between collisions} \times \text{avg. molec. speed}$$

- Called the **mean free path**

$$\lambda = \frac{1}{\theta} \bar{C} = \frac{\bar{C}}{n\sigma\bar{C}} = \frac{1}{n\sigma}$$



AE/ME 6765

Warning

- Careful - for this simplistic approach to find θ we assumed all other molecules in path of our molecule were:
 - identical (same size) to our molecule (possible)
 - and were not moving (**not true**)
- Will see later that $\theta = n\sigma\bar{g}^{-1}$ **mean relative speed between molecules**
 - and for identical molecules, $\bar{g} = \sqrt{2} \bar{C}$
- So for our previous case

$$\lambda = 1/\sqrt{2}n\sigma$$

AE/ME 6765

STP Values for Air

- What is typical value for mean free path in air at STP?
 - N_2, O_2 have $d \sim$ few Å, e.g., $\sim 3 \times 10^{-8} \text{ cm}$ $\lambda = 1/\sqrt{2}n\sigma$
 - so $\sigma \sim \pi d^2 \sim 3 \times 10^{-15} \text{ cm}^2$
 - at STP, $n \sim 2.7 \times 10^{19} \text{ cm}^{-3}$
 - so $\lambda \sim cm/(1.4 \times 3 \times 2.7 \times 10^4) \sim 9 \times 10^{-6} \text{ cm} \sim 90 \text{ nm}$
 - Comparing

λ	$\Delta = n^{-1/3}$	d
90 nm	3 nm	0.3 nm

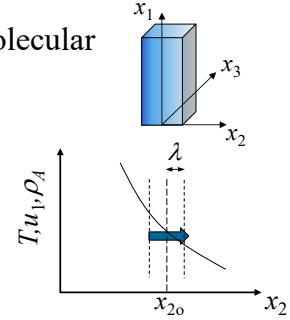
- $\lambda >> \Delta > d$
- What is typical value for collision frequency at STP?
 - assuming mean speed similar to speed of sound,
 - $\theta \sim 330/9 \times 10^{-8} \sim 4 \times 10^9 \text{ s}^{-1}$ ($\sim 0.1\text{-}0.5 \text{ ns between collisions}$)

Pressure/Temperature Scaling

- Interesting to examine how λ and θ scale with temperature and pressure
- **Mean free path**
 - $\lambda \propto 1/n \propto T/p$
 - *mean free path increases at lower density (low p, high T)*
- **Collision frequency**
 - $\theta \propto n \bar{C} \propto (p/T) T^{1/2} \propto p/T^{1/2}$
 - *collisions occur more often at high p and low T*
 - *but for fixed density, more often at high T*

Heuristic Diffusion Model

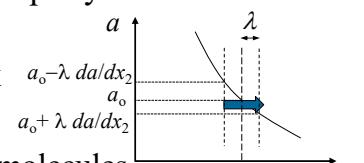
- Now that we have simple model for molecular motion, we can apply it to diffusion
 - find physical expressions for k, μ, D**
- Consider 1-d gradient in ρ_A, u_1 or T at plane located @ x_{20}
- Molecules crossing x_{20} carry their mass, momentum, energy
 - those moving rightward (in gradient direction) carry “more” than leftward moving
 - so net flux of property will be rightward
- Molecule carries properties from its last collision position
 - so look at molecules that are $\pm\lambda$ away from x_{20}



AE/ME 6765

Heuristic Diffusion Model: Fluxes

- We want to know net flux of property across x_{20} due to gradient
- Start with **1-way number flux**
 - number_molec/area/time
 - should depend on how many molecules present (or number density n) and how fast they are moving (e.g., mean speed \bar{C})
 - turns out $=n\bar{C}/4$ (see V&K Ex. II5.1a)
- Then 1-way flux of property $=n\bar{C}/4 \times m \times a(x_2)$
 - using 1st term in Taylor expansion $a(x_{20} \pm \lambda) = a_0 \pm \lambda da/dx_2$
- Net flux** $\cong n\bar{C}/4 \times m \times [(a_0 - \lambda da/dx_2) - (a_0 + \lambda da/dx_2)]$



AE/ME 6765

Heuristic Diffusion Model: Net Flux

- So net property flux $\approx -\frac{1}{2}nm\bar{C}\lambda da/dx_2 = -\frac{1}{2}\rho\bar{C}\lambda da/dx_2$
- Compare this expression to basic versions for j , τ and q

Property	da	Net Flux	Diff. Expression	Diffusivities
Mass	dY_A	$-\rho\bar{C}_A\lambda/2 dY_A/dx$	$-\rho D_{AA} dY_A/dx$	$D_{AA} \approx \bar{C}_A\lambda/2$
Momentum	du	$-\rho\bar{C}\lambda/2 du/dx$	$^* -\mu du/dx$	$\mu/\rho \approx \bar{C}\lambda/2$
Energy	$de \sim c_v dT$	$-\rho\bar{C}\lambda/2 c_v dT/dx$	$-k dT/dx$	$k/\rho c_v \approx \bar{C}\lambda/2$

Takeaways

- all diffusivities scale as $\bar{C}\lambda = \theta\lambda^2 \propto \bar{C}/n\sigma$ (and units l^2/t)
 - diffusion depends on how far molecules go between collisions and how fast they move (or how often they collide)
 - larger λ , faster \bar{C} (less time between collisions)
 \Rightarrow higher diffusivities
- ratios of diffusivities $O(1)$ for gases

** minus since exerted force = mom. loss*

AE/ME 6765

Comments on These Results: μ, D

$$D \approx \mu/\rho \approx k/\rho c_v \approx \bar{C}\lambda/2$$

- Implicitly assumed “weak gradients” (\sim equilibrium)
 - gradient at x_{20} and $x_{20} \pm \lambda$ nearly the same
- Estimates for μ reasonably close for gases (especially monatomic)
- Suggests Schmidt number ($Sc \equiv \mu/\rho D \approx 1$)
 - close for monatomic gases ($\sim 5/6$)
- Reasonable (p, T) scaling for μ
 - $\mu \propto n T^{1/2}$ ($1/n \Rightarrow \mu \neq \mu(p)$) and $\mu \propto T^{0.5}$

correct for ideal gases

closer to $T^{0.7}$ for noble gases, air

AE/ME 6765

Comments on These Results: k

$$D \approx \mu/\rho \approx k/\rho c_v \approx \bar{C} \lambda/2$$

Eucken correction
can be derived from
more accurate analysis
(Chapman-Enskog)

- Under-predicts thermal conductivity k
 - e.g., $\sim 2.5 \times$ low for monatomic gas ($k/\rho c_v \approx 2.5 \bar{C} \lambda/2 = 2.5 \mu/\rho$)
 - mostly because we ignored correlation between molecular speed and energy
 - higher energy molecules move faster (across plane)
 - specifics of previous collision before crossing plane are also important
- With Eucken correction, suggests Prandlt number

$\Pr \equiv \mu/\rho\alpha = \mu c_p/k = 2/5 \gamma$	<i>thermal diffusivity, $\alpha = k/\rho c_p$</i>	<i>Gas (low T)</i>	γ	\Pr	<i>good agreement with data</i>
		Monatomic	5/3	2/3	
		Diatomc	7/5	14/25 ≈ 0.56	<i>not close, actual value ~ 0.75</i>

AE/ME 6765

Comments on These Results: k

$$\mu/\rho \approx k/(2.5\rho c_v) \approx \bar{C} \lambda/2$$

- Why disagreement for diatomic gases (and polyatomics)?
 - because Eucken correction should only apply to part of molecular energy correlated to molecular speed

$$e = e_{tr} + e_{int}$$

- So consider $k = k_{tr} + k_{int} = 2.5\mu c_{v,tr} + \mu c_{v,int}$
- Then $\Pr = \frac{\gamma c_v \mu}{k} = \frac{\gamma c_v \mu}{2.5\mu c_{v,tr} + \mu c_{v,int}} = \frac{\gamma}{1.5(c_{v,tr}/c_v) + 1}$
$$= \frac{\gamma}{1.5 \left(\frac{3}{2}(c_p - c_v)/c_v \right) + 1} = \frac{\gamma}{\frac{9}{4}(\gamma - 1) + 1} = \frac{4\gamma}{9\gamma - 5}$$

- Now return to low T diatomic gas with $\gamma = 1.4$
 $\Rightarrow \Pr = 0.74$ *very close to experimental value 0.75*

AE/ME 6765