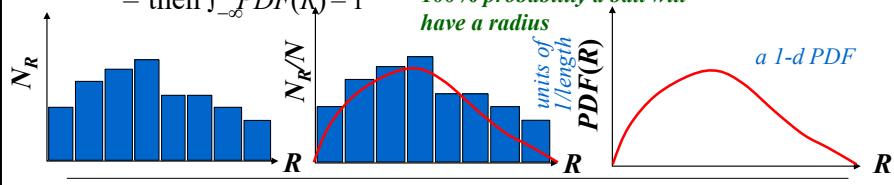
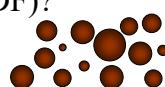


Velocity Distribution Function

- In this section, we want to look at a rigorous derivation of equilibrium gas properties using kinetic theory
- Previously we noted that molecules have a distribution of speeds (or more properly velocities)
 - what is this function?
- Begin using a statistical approach to describe the probability that a molecule in a gas will have a specific velocity (within some small range)



$f(\vec{c}) = f(c_1, c_2, c_3) = f(c_i)$ **Velocity (probability) Distribution Function**

Equal Kin Theory -1
Copyright © 2005, 2018, 2019, 2021 by Jerry M. Seltzman. All rights reserved.

AE/ME 6765

Probability Distribution Function

- What is a probability distribution function (PDF)?
- Say we have a large number of spherical balls with different sizes (radius, R)
 - could create a histogram of the number of balls (N_R) with R in some binned ranges (e.g., $R-\Delta < R < R+\Delta$)
 - or the fraction of balls in each bin
- What happens if we make the bins infinitesimally narrow?
 - get a smooth, continuous function
- This function becomes a PDF if we let $PDF(R)dR = \frac{dN_R}{N_R}$
 - then $\int_{-\infty}^{\infty} PDF(R) = 1$

Equal Kin Theory -2
Copyright © 2005, 2018, 2019, 2021 by Jerry M. Seltzman. All rights reserved.

AE/ME 6765

Velocity Distribution Function

- So our velocity PDF $f(\vec{c}) = f(c_1, c_2, c_3) = f(c_i)$
 - is probability of finding particle with velocity in range $(c_1, c_2, c_3) \rightarrow (c_1 + dc_1, c_2 + dc_2, c_3 + dc_3)$
 - and $\frac{dN_{c_i}}{N} = f(c_i) dc_1 dc_2 dc_3 = f(c_i) dV_c$ units of 1/speed³
 - $\int \int \int f(c_i) dc_1 dc_2 dc_3 = \int_{-\infty}^{\infty} f(c_i) dV_c = 1$

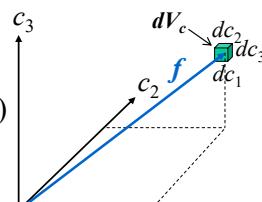
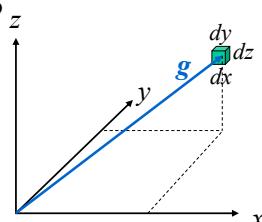
Average Properties

- to find mean (or expected) value of some property/ function that depends on molecule's velocity, i.e., $Q(c_i)$

$$\bar{Q} = \frac{\int_{-\infty}^{\infty} N f(c_i) Q(c_i) dV_c}{N} = \int_{-\infty}^{\infty} Q(c_i) f(c_i) dV_c$$

Equal Kin Theory -3

Copyright © 2005, 2018, 2019, 2021 by Jerry M. Seltzman. All rights reserved.



AE/ME 6765

Velocity “Space”

- Common to divide physical space into 3 (Cartesian) coordinates (x, y, z)
 - and perform integrations over differential volumes in this space, e.g.

$$\iiint g(x, y, z) dx dy dz$$

- We can also think of the possible velocities of molecules as constituting a 3-dimensional **velocity “space”**
 - can talk about how molecule “moves” through velocity space (i.e., accelerates)
 - perform integrations over velocity space, e.g.

$$\iiint f(c_i) dV_c$$

Equal Kin Theory -4

Copyright © 2005, 2018, 2019, 2021 by Jerry M. Seltzman. All rights reserved.

AE/ME 6765