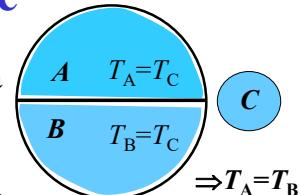


Zeroth Law of TD

- **History**

- as a “formal” postulate of TD in came after 1st and 2nd Laws
- was implicitly buried in common thinking of temperature

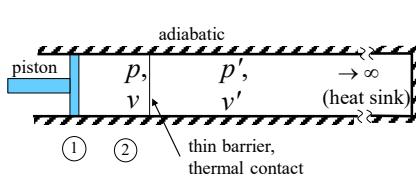

- **Observation**

- Sets of bodies can be ordered according to their degree of “hotness” (e.g., how hot they “feel”)

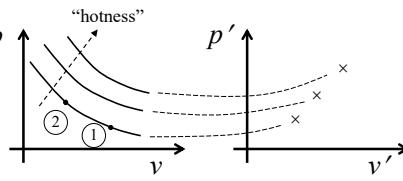
- **Postulate**

- if bodies A and B are in thermal equilibrium with a 3rd body C, then A&B are in thermal equilibrium with each other

Temperature



- A TD property must exist that is a measure of (quantifies) “hotness”
 - call it **temperature**
- Under this definition, temperature is a property of matter and can only be defined when a body (matter) is in equilibrium
- Defining a temperature scale
 - later we will examine TD definition and scale for temperature
 - for now look at earlier (historical) scale, the **“perfect-gas temperature scale”** *“luckily” it agrees with TD temp. scale*


PG Temperature Scale

- Empirical observation
 - temperature of a gas confined at a constant volume is monotonically increasing function of gas pressure

Experiment

Results

- p', v' are constants for a given p - v hyperbola
 - each hyperbola has different “hotness”, i.e, an isotherm
- so $pv =$ function of hotness

PG Temperature Scale

- We can “choose” to use these isotherms to define temperature $T \equiv pv/c$ ***T is inten. (fn of 2 inten. props.)***
- Then
 1. $T \geq 0$
 2. T monotonic with “hotness”
 3. T a simple function
- Temperature scale ($c=?$)
 - since we can accurately measure ratios of temperatures, it is sufficient to select a temperature of just one point on the scale (effectively defines c)

SI (PG) Temperature Scale

- The *SI* scale (one of various single point scales) uses the **triple-point of water**
 - the temperature at which three phases of water (liquid, gas and solid-ice) all exist in thermal equilibrium
 - easily reproducible standard
 - “declared” (by Intl. agreement) to be **273.16 K**
- Why such a “strange” value?
 - chosen to agree with earlier two-point scale
 - $T_{\text{H}_2\text{O,boil}} - T_{\text{H}_2\text{O,freeze}} = 100\text{K} (=100\text{C})$