AE3450 Outline of Lectures

This is a tentative outline of the material that will be covered
 
Subjects


Reading Assignment

Primary Chapters
Sections
I. Introduction and Overview (1.5 Hours)

 
 A. Thermodynamics
 B. Compressible Flow
 C. Units, Pressure and Temperature


BH 1.1
J 1.1
BH 1.3-1.5

II. Basic Thermodynamic Concepts (5.5 Hours)


BH Ch. 1-2

 A. Systems 
 
1.2.1
 B. Energy and its Transfer by Work and Heat

1.6, 1.7, 2.4
 C. Equilibrium and Properties (Example: Work as Path Function)


1.2.2, 1.2.3
 D. Properties of Substances
 
 
   1. Extensive and Intensive Thermodynamic Properties
 
2.2.1, 2.2.2, 2.4.4
   2. The State Postulate and State Equations
 
2.3
   3. Ideal/Perfect Gas State Equations (Example: PG State Equations)


2.8, 2.7.1
   4. Incompressible Substances (Liquids/Solids)

2.9, 2.10
   5. Equilibrium Diagrams and Saturated Liquid/Vapor Systems
               (Two slides per page version)


2.5, 2.6
 E. General Thermodynamic Problem Solving Approach

4.3

III. Mass Conservation (2 Hours)


BH Ch. 3

 A. Closed Systems (Control Mass Approach)
 
p. 113 & 3.3
 B. Open Systems (Control Volume Approach)
               (Two slides per page version)

 
3.4
   1. Control Mass to Control Volume Transformation


   2. Integral Form of Mass Conservation


   3. Examples


   4. Differential Form for Quasi-1D Steady Flows


   5. Reynolds Transport Theorem & Conservation of Mometum


   6. Flow Rates and Fluxes



IV. Energy Conservation: 1st Law of Thermodynamics (4.5 Hours)


BH Ch. 4

 A. General Statement of the First Law
 
4.2
 B. Closed Systems (Control Mass Approach)

4.4 (not p.151-153)
   1. Differential and Integral Forms

 
   2. Examples

 
     a. Constant Volume Heating


     b. Constant Pressure Heating


     c. Effect of Friction (Irreversibility)


     d. Latent Heats

2.7.2
   3. Cycles

4.4 (p.151-153)
 C. Open Systems (Control Volume Approach)  (Two slides/page)

 
4.5
   1. Integral Form
   
   2. Simplifications


   3. Examples (including stagnation temperature)
               (Two slides per page version)

   
   4. Differential Form for (Quasi) 1-D, Steady Flow



V. Entropy Conservation: 2nd Law of Thermodynamics (5.5 Hours)


BH Ch. 5-6

 A. Characteristics of Entropy
 
5.1
   1. First Law Limitations


   2. Entropy and Molecular Chaos


   3. Entropy Production and the 2nd Law for Isolated Systems

(an alternate is 5.12)
 B. Reversible and Irreversible Processes
 
5.2
 C. Entropy Transfer

(none)
 D. 2nd Law Development for Closed Systems

 
   1. Approach Based on Thermodynamic Definition of Temperature
               (Two slides per page version)


(none)
   2. Classical Approach (Clausius, Kelvin-Planck and Carnot)
               (Two slides per page version)


5.3-5.7
   3. Isentropic Processes


 E. Entropy State Equations


   1. The Gibbs Equation

5.8
   2. Entropy Relations for Ideal (Thermally Perfect) Gases

5.9
    a. State Equation


    b. T-s Diagrams


    c. Isentropic Relations

 
    d. Examples (including stagnation pressure)


    e. Ideal Gas Mixtures


   3. Entropy State Relations for Other Substances

5.10-5.11
 F. Entropy "Conservation" for Open Systems
 
6.6

VI. Isentropic Compressible Flows (4.5 Hours)


J Ch. 2, 3

 A. Wave Propagation in Compressible Substances
 (also BH 14.2)
 
   1. Speed of Sound (Two slides/page)
 
2.1-2.3
   2. Mach Angle and Mach Number (Two slides/page)
 
2.4-2.5
   3. Stagnation Properties and Mach Number (Two slides/page)

3.4
 B. Steady, Quasi-1D Flow Equations


 C. Steady Isentropic Flow with Area Change (Two slides/page)
(also BH 14.3)
 
   1. Conservations Equations - Mach Relations
 
3.2
   2. Sonic Throat Condition and Choking
 
3.3
 D. Isentropic Nozzle Analysis and Back Pressure (Two slides/page)

 
   1. Converging Nozzle Analysis
 
3.5
   2. Converging-Diverging Nozzle Analysis
 
3.6

VII. Shock Waves (9 hours)


J Ch. 4-6

 A. Formation of Shock Waves - Compression
 
4.1-4.2
 B. Normal Shock Waves
 
   1. Mach Number Relations
 
4.3
   2. Moving Normal Shocks (Two slides/page)
 
4.4
   3. Reflected Normal Shocks (Two slides/page)

4.5
   4. Normal Shocks in Converging-Diverging Nozzles
 
5.2
   5. Starting Problem - Supersonic Windtunnels
 
5.3
 C. Oblique Shock Waves
 
6.1
   1. Mach Number Relations (Two slides/page)
 
6.2
   2. Strong, Weak and Detached Shocks (Two slides/page)
 
6.2
   3. Application to Supersonic Inlets (Diffusers) (Two slides/page)
 
Ex. 6.3, 8.2

VIII. Prandtl Meyer Expansions and Compressions (2 hours)
        (Two slides/page)


J Ch. 7
 

 A. Flow Equations - Mach Relations
 
7.2,7.4
 B. Maximum Turning Angle
 
7.6
 C. Continuous Expansions and Compressions
 
7.3,7.5

IX. Reflected Waves (2 hours)


J Ch. 6-8

 A. Reflections of Compression and Expansion Waves (Two slides/page)
 
6.3, 7.7
 B. Application to Under & Overexpanded Supersonic Nozzles
      (Two slides/page)

 
8.3
 C. Plug and Aerospike Nozzles  (Two slides/page)
 
8.4

X. Flows with Friction and Heat Transfer (4 hours)


J Ch. 9-10

 A. Generalized (1-D) Mach Relations  (Two slides/page)

partly 9.5
 B. Fanno Flow - Adiabatic Constant Area Flow with Friction
      (Two slides/page)

 
   1. Overview - Thermodynamics Analysis
 
9.1
   2. Flow Equations - Mach Relations
 
9.2
   3. Example - Supersonic Nozzle with Constant Area Duct
 
9.3
 C. Rayleigh Flow - Constant Area Flow with Heat Transfer
      (Two slides/page)

 
10.2